GottaGoFaZt3r/RTL/sdram.v

333 lines
9.2 KiB
Verilog

/*
GottaGoFaZt3r
Copyright 2022 Matthew Harlum
GottaGoFaZt3r is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
`timescale 1ns / 1ps
module SDRAM(
input [27:2] ADDR,
input [3:0] DS_n,
input DOE,
input FCS_n,
input ram_cycle,
input RESET_n,
input RW,
input CLK,
input ECLK,
input configured,
input MTCR_n,
output [1:0] BA,
output [12:0] MADDR,
output CAS_n,
output RAS_n,
output [1:0] CS_n,
output WE_n,
output reg CKE,
output reg [3:0] DQM_n,
output DTACK_EN
);
localparam tRP = 1;
localparam tRCD = 1;
localparam tRFC = 4;
localparam CAS_LATENCY = 3'd2;
`define initcmd(ARG) \
{ras_i_n, cas_i_n, we_i_n} <= ARG;
`define cmd(ARG) \
{ras_r_n, cas_r_n, we_r_n} <= ARG;
// RAS CAS WE
localparam cmd_nop = 3'b111,
cmd_active = 3'b011,
cmd_read = 3'b101,
cmd_write = 3'b100,
cmd_burst_terminate = 3'b110,
cmd_precharge = 3'b010,
cmd_auto_refresh = 3'b001,
cmd_load_mode_reg = 3'b000;
localparam mode_register = {
3'b0, // M10-12 - Reserved
1'b1, // M9 - No burst mode, Single access
2'b0, // M8-7 - Standard operation
CAS_LATENCY, // M6-4 - CAS Latency
1'b0, // M3 - Burst type
3'b0 // M2-0 - Burst length
};
reg [1:0] cs_i_n;
reg ras_i_n;
reg cas_i_n;
reg we_i_n;
reg [1:0] cs_r_n;
reg ras_r_n;
reg cas_r_n;
reg we_r_n;
reg [12:0] maddr_i;
reg [12:0] maddr_r;
reg [1:0] ba_r;
reg init_done;
reg [6:0] init_state;
reg [3:0] refresh_timer;
reg [1:0] refresh_request;
reg refreshing;
assign MADDR = (init_done) ? maddr_r : maddr_i;
assign BA = ba_r;
assign CS_n = (init_done) ? cs_r_n : cs_i_n;
assign RAS_n = (init_done) ? ras_r_n : ras_i_n;
assign CAS_n = (init_done) ? cas_r_n : cas_i_n;
assign WE_n = (init_done) ? we_r_n : we_i_n;
localparam init_cycle_precharge1 = 0,
init_cycle_refresh1 = init_cycle_precharge1 + tRP,
init_cycle_precharge2 = init_cycle_refresh1 + tRFC,
init_cycle_refresh2 = init_cycle_precharge2 + tRP,
init_cycle_load = init_cycle_refresh2 + tRFC,
init_cycle_done = init_cycle_load + 1;
always @(negedge CLK or negedge RESET_n) begin
if (!RESET_n) begin
init_state <= init_cycle_precharge1;
init_done <= 0;
maddr_i <= 13'b0;
cs_i_n[1:0] <= 2'b00;
end else begin
// Ram Initialization //
if (!init_done && configured) begin
init_state <= init_state + 1;
case (init_state)
// Precharge
init_cycle_precharge1, init_cycle_precharge2:
begin
`initcmd(cmd_precharge)
maddr_i[11:0] <= {2'b01,10'b0};
end
// Autorefresh
init_cycle_refresh1, init_cycle_refresh2:
begin
`initcmd(cmd_auto_refresh)
end
// Load Mode Register
init_cycle_load:
begin
`initcmd(cmd_load_mode_reg)
maddr_i[12:0] <= mode_register;
end
// Init done, ram idle
init_cycle_done:
begin
init_done <= 1;
end
default:
begin
`initcmd(cmd_nop)
cs_i_n[1:0] <= 2'b00;
end
endcase
end
// End RAM Initialization //
end
end
reg [4:0] ram_state = 0;
reg cycle_type = 0;
localparam ram_cycle_access = 1'b1;
localparam ram_cycle_refresh = 1'b0;
localparam ram_cycle_idle = 5'b00000,
access_cycle_wait = ram_cycle_idle+tRCD,
access_cycle_rw = access_cycle_wait+1,
access_cycle_hold = access_cycle_rw+1,
access_cycle_precharge = access_cycle_hold+1,
refresh_cycle_pre = 5'b00000,
refresh_cycle_auto = refresh_cycle_pre+1,
refresh_cycle_end = refresh_cycle_auto+tRFC;
wire refreshreset = !refreshing & RESET_n;
always @(posedge ECLK or negedge refreshreset) begin
if (!refreshreset) begin
refresh_timer <= 4'h4;
end else begin
if (refresh_timer > 0) begin
refresh_timer <= refresh_timer - 1;
end
end
end
always @(posedge CLK or negedge RESET_n) begin
if (!RESET_n) begin
refresh_request <= 0;
end else begin
refresh_request <= {refresh_request[0], refresh_timer == 0};
end
end
reg [1:0] ram_cycle_sync;
reg dtack;
always @(posedge CLK) begin
ram_cycle_sync[1:0] <= {ram_cycle_sync[0], ram_cycle};
end
always @(posedge CLK or negedge RESET_n)
begin
if (!RESET_n) begin
`cmd(cmd_nop)
maddr_r[12:0] <= 13'b0;
ba_r[1:0] <= 2'b0;
CKE <= 1'b0;
dtack <= 1'b0;
refreshing <= 1'b0;
DQM_n[3:0] <= 4'b1111;
cs_r_n[1:0] <= 2'b11;
ram_state <= 1'b0;
end else begin
if (ram_state == 0) begin
CKE <= 1'b1;
dtack <= 1'b0;
DQM_n[3:0] <= 4'b1111;
cs_r_n[1:0] <= 2'b11;
refreshing <= 1'b0;
if (init_done) begin
// Refresh has the highest priority
// If refresh_request active, go do a refresh
if (refresh_request[1] == 1) begin
`cmd(cmd_precharge)
maddr_r[10] <= 1'b1; // Precharge all banks
cycle_type <= ram_cycle_refresh;
ram_state <= refresh_cycle_auto;
cs_r_n[1:0] <= 2'b00; // Refresh all modules
refreshing <= 1'b1;
// If refresh_request not active and we're in a ram cycle, go do a ram access
end else if (ram_cycle_sync[1] && !FCS_n) begin
`cmd(cmd_active)
cycle_type <= ram_cycle_access;
ram_state <= access_cycle_wait;
maddr_r[12:0] <= ADDR[23:11];
ba_r[1:0] <= ADDR[25:24];
cs_r_n[1:0] <= {ADDR[26],~ADDR[26]};
// No refresh needed at this time and no memory access, idle
end else begin
cs_r_n[1:0] <= 2'b11;
`cmd(cmd_nop)
end
end
end else begin
if (cycle_type == ram_cycle_access) begin
case (ram_state)
// Wait
//
// Wait for tRCD and also wait until we see data strobes before committing writes
access_cycle_wait: begin
`cmd(cmd_nop)
if (DS_n[3:0] != 4'b1111 && DOE || RW)
ram_state <= access_cycle_rw;
else
ram_state <= access_cycle_wait; // No data strobes seen yet, hold off
end
// Read/Write
//
// Uses A27 as MA9 so that memory is mirrored above 128MB when using 4x32MB chips
// Kickstart will detect the mirror and add 128MB to the free pool rather than 256MB
// This allows for the board to be assembled with 128MB or 256MB without needing separate firmware.
access_cycle_rw: begin
dtack <= 1;
maddr_r[12:0] <= {3'b000,ADDR[27], ADDR[10:2]};
if (!RW) begin
`cmd(cmd_write)
DQM_n[3:0] <= DS_n[3:0];
end else begin
`cmd(cmd_read)
// Reads must return a full long regardless of DS (Zorro III Bus Specifications pg 3-3)
DQM_n[3:0] <= 4'b0000;
end
ram_state <= access_cycle_hold;
end
// Hold
//
// Take CKE low until the end of the Zorro cycle in order to hold the read output
// For write cycles, just keep NOP'ing
access_cycle_hold: begin
dtack <= 0;
`cmd(cmd_nop)
if (!FCS_n && DS_n[3:0] != 4'b1111) begin
if (RW)
CKE <= 0;
ram_state <= access_cycle_hold;
end else begin
CKE <= 1;
if (!FCS_n)
// If Data strobes went inactive before FCS_n then it must be a burst
// Go do the next burst cycle
ram_state <= access_cycle_wait;
else
// Otherwise precharge and return to idle state
ram_state <= access_cycle_precharge;
end
end
// Precharge all banks
access_cycle_precharge: begin
`cmd(cmd_precharge)
maddr_r[10] <= 1'b1;
ram_state <= ram_cycle_idle;
end
default: begin
// We should never get here...
`cmd(cmd_nop)
ram_state <= ram_state+1;
end
endcase
end else begin
ram_state <= ram_state + 1;
case (ram_state)
refresh_cycle_auto:
`cmd(cmd_auto_refresh)
refresh_cycle_end: begin
ram_state <= ram_cycle_idle;
end
default:
`cmd(cmd_nop)
endcase
end
end
end
end
reg [3:0] dtack_delayed;
always @(posedge CLK or negedge RESET_n) begin
if (!RESET_n)
dtack_delayed[3:0] <= 4'b0;
else
dtack_delayed[3:0] <= {dtack_delayed[2:0], dtack};
end
// Really bad hack to pulse dtack for 3xClock period during bursts... will be removed
assign DTACK_EN = dtack_delayed[1] || dtack_delayed[2] || dtack_delayed[3];
endmodule