beeanyew 31f58d05d3 [MEGA-WIP] Raylib-based RTG output
NOTE: A working keyboard must be attached to the Raspberry Pi while testing this, otherwise it's impossible to actually quit the emulator.
raylib takes possession of the SSH keyboard for some reason, which makes it so you can't Ctrl+C out of the emulator over SSH, you must Ctrl+C or press Q on the Pi keyboard.

A mostly working RTG implementation using raylib instead of SDL2.0
Greatly decreases the rendering overhead for 8bpp modes and gets rid of the need for hardware ARGB888 texture format support.
RTG will be initialized using the resolution of the Raspberry Pi, and onbly the 320x200/320x240 modes are currently scaled to the full vertical area of the screen.
2021-05-01 19:43:26 +02:00

1989 lines
80 KiB
C

/**********************************************************************************************
*
* Physac v1.1 - 2D Physics library for videogames
*
* DESCRIPTION:
*
* Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
* to simluate physics. A physics step contains the following phases: get collision information,
* apply dynamics, collision solving and position correction. It uses a very simple struct for physic
* bodies with a position vector to be used in any 3D rendering API.
*
* CONFIGURATION:
*
* #define PHYSAC_IMPLEMENTATION
* Generates the implementation of the library into the included file.
* If not defined, the library is in header only mode and can be included in other headers
* or source files without problems. But only ONE file should hold the implementation.
*
* #define PHYSAC_STATIC (defined by default)
* The generated implementation will stay private inside implementation file and all
* internal symbols and functions will only be visible inside that file.
*
* #define PHYSAC_DEBUG
* Show debug traces log messages about physic bodies creation/destruction, physic system errors,
* some calculations results and NULL reference exceptions
*
* #define PHYSAC_DEFINE_VECTOR2_TYPE
* Forces library to define struct Vector2 data type (float x; float y)
*
* #define PHYSAC_AVOID_TIMMING_SYSTEM
* Disables internal timming system, used by UpdatePhysics() to launch timmed physic steps,
* it allows just running UpdatePhysics() automatically on a separate thread at a desired time step.
* In case physics steps update needs to be controlled by user with a custom timming mechanism,
* just define this flag and the internal timming mechanism will be avoided, in that case,
* timming libraries are neither required by the module.
*
* #define PHYSAC_MALLOC()
* #define PHYSAC_CALLOC()
* #define PHYSAC_FREE()
* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
*
* COMPILATION:
*
* Use the following code to compile with GCC:
* gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lopengl32 -lgdi32 -lwinmm -std=c99
*
* VERSIONS HISTORY:
* 1.1 (20-Jan-2021) @raysan5: Library general revision
* Removed threading system (up to the user)
* Support MSVC C++ compilation using CLITERAL()
* Review DEBUG mechanism for TRACELOG() and all TRACELOG() messages
* Review internal variables/functions naming for consistency
* Allow option to avoid internal timming system, to allow app manage the steps
* 1.0 (12-Jun-2017) First release of the library
*
*
* LICENSE: zlib/libpng
*
* Copyright (c) 2016-2021 Victor Fisac (@victorfisac) and Ramon Santamaria (@raysan5)
*
* This software is provided "as-is", without any express or implied warranty. In no event
* will the authors be held liable for any damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose, including commercial
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not claim that you
* wrote the original software. If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but is not required.
*
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
* as being the original software.
*
* 3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/
#if !defined(PHYSAC_H)
#define PHYSAC_H
#if defined(PHYSAC_STATIC)
#define PHYSACDEF static // Functions just visible to module including this file
#else
#if defined(__cplusplus)
#define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
#else
#define PHYSACDEF extern // Functions visible from other files
#endif
#endif
// Allow custom memory allocators
#ifndef PHYSAC_MALLOC
#define PHYSAC_MALLOC(size) malloc(size)
#endif
#ifndef PHYSAC_CALLOC
#define PHYSAC_CALLOC(size, n) calloc(size, n)
#endif
#ifndef PHYSAC_FREE
#define PHYSAC_FREE(ptr) free(ptr)
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MAX_BODIES 64 // Maximum number of physic bodies supported
#define PHYSAC_MAX_MANIFOLDS 4096 // Maximum number of physic bodies interactions (64x64)
#define PHYSAC_MAX_VERTICES 24 // Maximum number of vertex for polygons shapes
#define PHYSAC_DEFAULT_CIRCLE_VERTICES 24 // Default number of vertices for circle shapes
#define PHYSAC_COLLISION_ITERATIONS 100
#define PHYSAC_PENETRATION_ALLOWANCE 0.05f
#define PHYSAC_PENETRATION_CORRECTION 0.4f
#define PHYSAC_PI 3.14159265358979323846f
#define PHYSAC_DEG2RAD (PHYSAC_PI/180.0f)
//----------------------------------------------------------------------------------
// Data Types Structure Definition
//----------------------------------------------------------------------------------
#if defined(__STDC__) && __STDC_VERSION__ >= 199901L
#include <stdbool.h>
#endif
typedef enum PhysicsShapeType { PHYSICS_CIRCLE = 0, PHYSICS_POLYGON } PhysicsShapeType;
// Previously defined to be used in PhysicsShape struct as circular dependencies
typedef struct PhysicsBodyData *PhysicsBody;
#if defined(PHYSAC_DEFINE_VECTOR2_TYPE)
// Vector2 type
typedef struct Vector2 {
float x;
float y;
} Vector2;
#endif
// Matrix2x2 type (used for polygon shape rotation matrix)
typedef struct Matrix2x2 {
float m00;
float m01;
float m10;
float m11;
} Matrix2x2;
typedef struct PhysicsVertexData {
unsigned int vertexCount; // Vertex count (positions and normals)
Vector2 positions[PHYSAC_MAX_VERTICES]; // Vertex positions vectors
Vector2 normals[PHYSAC_MAX_VERTICES]; // Vertex normals vectors
} PhysicsVertexData;
typedef struct PhysicsShape {
PhysicsShapeType type; // Shape type (circle or polygon)
PhysicsBody body; // Shape physics body data pointer
PhysicsVertexData vertexData; // Shape vertices data (used for polygon shapes)
float radius; // Shape radius (used for circle shapes)
Matrix2x2 transform; // Vertices transform matrix 2x2
} PhysicsShape;
typedef struct PhysicsBodyData {
unsigned int id; // Unique identifier
bool enabled; // Enabled dynamics state (collisions are calculated anyway)
Vector2 position; // Physics body shape pivot
Vector2 velocity; // Current linear velocity applied to position
Vector2 force; // Current linear force (reset to 0 every step)
float angularVelocity; // Current angular velocity applied to orient
float torque; // Current angular force (reset to 0 every step)
float orient; // Rotation in radians
float inertia; // Moment of inertia
float inverseInertia; // Inverse value of inertia
float mass; // Physics body mass
float inverseMass; // Inverse value of mass
float staticFriction; // Friction when the body has not movement (0 to 1)
float dynamicFriction; // Friction when the body has movement (0 to 1)
float restitution; // Restitution coefficient of the body (0 to 1)
bool useGravity; // Apply gravity force to dynamics
bool isGrounded; // Physics grounded on other body state
bool freezeOrient; // Physics rotation constraint
PhysicsShape shape; // Physics body shape information (type, radius, vertices, transform)
} PhysicsBodyData;
typedef struct PhysicsManifoldData {
unsigned int id; // Unique identifier
PhysicsBody bodyA; // Manifold first physics body reference
PhysicsBody bodyB; // Manifold second physics body reference
float penetration; // Depth of penetration from collision
Vector2 normal; // Normal direction vector from 'a' to 'b'
Vector2 contacts[2]; // Points of contact during collision
unsigned int contactsCount; // Current collision number of contacts
float restitution; // Mixed restitution during collision
float dynamicFriction; // Mixed dynamic friction during collision
float staticFriction; // Mixed static friction during collision
} PhysicsManifoldData, *PhysicsManifold;
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
//----------------------------------------------------------------------------------
// Module Functions Declaration
//----------------------------------------------------------------------------------
// Physics system management
PHYSACDEF void InitPhysics(void); // Initializes physics system
PHYSACDEF void UpdatePhysics(void); // Update physics system
PHYSACDEF void ResetPhysics(void); // Reset physics system (global variables)
PHYSACDEF void ClosePhysics(void); // Close physics system and unload used memory
PHYSACDEF void SetPhysicsTimeStep(double delta); // Sets physics fixed time step in milliseconds. 1.666666 by default
PHYSACDEF void SetPhysicsGravity(float x, float y); // Sets physics global gravity force
// Physic body creation/destroy
PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density); // Creates a new circle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density); // Creates a new rectangle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density); // Creates a new polygon physics body with generic parameters
PHYSACDEF void DestroyPhysicsBody(PhysicsBody body); // Destroy a physics body
// Physic body forces
PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force); // Adds a force to a physics body
PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount); // Adds an angular force to a physics body
PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force); // Shatters a polygon shape physics body to little physics bodies with explosion force
PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians); // Sets physics body shape transform based on radians parameter
// Query physics info
PHYSACDEF PhysicsBody GetPhysicsBody(int index); // Returns a physics body of the bodies pool at a specific index
PHYSACDEF int GetPhysicsBodiesCount(void); // Returns the current amount of created physics bodies
PHYSACDEF int GetPhysicsShapeType(int index); // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
PHYSACDEF int GetPhysicsShapeVerticesCount(int index); // Returns the amount of vertices of a physics body shape
PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex); // Returns transformed position of a body shape (body position + vertex transformed position)
#if defined(__cplusplus)
}
#endif
#endif // PHYSAC_H
/***********************************************************************************
*
* PHYSAC IMPLEMENTATION
*
************************************************************************************/
#if defined(PHYSAC_IMPLEMENTATION)
// Support TRACELOG macros
#if defined(PHYSAC_DEBUG)
#include <stdio.h> // Required for: printf()
#define TRACELOG(...) printf(__VA_ARGS__)
#else
#define TRACELOG(...) (void)0;
#endif
#include <stdlib.h> // Required for: malloc(), calloc(), free()
#include <math.h> // Required for: cosf(), sinf(), fabs(), sqrtf()
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Time management functionality
#include <time.h> // Required for: time(), clock_gettime()
#if defined(_WIN32)
// Functions required to query time on Windows
int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
#endif
#if defined(__linux__) || defined(__FreeBSD__)
#if _POSIX_C_SOURCE < 199309L
#undef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
#endif
#include <sys/time.h> // Required for: timespec
#endif
#if defined(__APPLE__) // macOS also defines __MACH__
#include <mach/mach_time.h> // Required for: mach_absolute_time()
#endif
#endif
// NOTE: MSVC C++ compiler does not support compound literals (C99 feature)
// Plain structures in C++ (without constructors) can be initialized from { } initializers.
#if defined(__cplusplus)
#define CLITERAL(type) type
#else
#define CLITERAL(type) (type)
#endif
//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#define PHYSAC_MIN(a,b) (((a)<(b))?(a):(b))
#define PHYSAC_MAX(a,b) (((a)>(b))?(a):(b))
#define PHYSAC_FLT_MAX 3.402823466e+38f
#define PHYSAC_EPSILON 0.000001f
#define PHYSAC_K 1.0f/3.0f
#define PHYSAC_VECTOR_ZERO CLITERAL(Vector2){ 0.0f, 0.0f }
//----------------------------------------------------------------------------------
// Global Variables Definition
//----------------------------------------------------------------------------------
static double deltaTime = 1.0/60.0/10.0 * 1000; // Delta time in milliseconds used for physics steps
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Time measure variables
static double baseClockTicks = 0.0; // Offset clock ticks for MONOTONIC clock
static unsigned long long int frequency = 0; // Hi-res clock frequency
static double startTime = 0.0; // Start time in milliseconds
static double currentTime = 0.0; // Current time in milliseconds
#endif
// Physics system configuration
static PhysicsBody bodies[PHYSAC_MAX_BODIES]; // Physics bodies pointers array
static unsigned int physicsBodiesCount = 0; // Physics world current bodies counter
static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS]; // Physics bodies pointers array
static unsigned int physicsManifoldsCount = 0; // Physics world current manifolds counter
static Vector2 gravityForce = { 0.0f, 9.81f }; // Physics world gravity force
// Utilities variables
static unsigned int usedMemory = 0; // Total allocated dynamic memory
//----------------------------------------------------------------------------------
// Module Internal Functions Declaration
//----------------------------------------------------------------------------------
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Timming measure functions
static void InitTimer(void); // Initializes hi-resolution MONOTONIC timer
static unsigned long long int GetClockTicks(void); // Get hi-res MONOTONIC time measure in mseconds
static double GetCurrentTime(void); // Get current time measure in milliseconds
#endif
static void UpdatePhysicsStep(void); // Update physics step (dynamics, collisions and position corrections)
static int FindAvailableBodyIndex(); // Finds a valid index for a new physics body initialization
static int FindAvailableManifoldIndex(); // Finds a valid index for a new manifold initialization
static PhysicsVertexData CreateDefaultPolygon(float radius, int sides); // Creates a random polygon shape with max vertex distance from polygon pivot
static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size); // Creates a rectangle polygon shape based on a min and max positions
static void InitializePhysicsManifolds(PhysicsManifold manifold); // Initializes physics manifolds to solve collisions
static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b); // Creates a new physics manifold to solve collision
static void DestroyPhysicsManifold(PhysicsManifold manifold); // Unitializes and destroys a physics manifold
static void SolvePhysicsManifold(PhysicsManifold manifold); // Solves a created physics manifold between two physics bodies
static void SolveCircleToCircle(PhysicsManifold manifold); // Solves collision between two circle shape physics bodies
static void SolveCircleToPolygon(PhysicsManifold manifold); // Solves collision between a circle to a polygon shape physics bodies
static void SolvePolygonToCircle(PhysicsManifold manifold); // Solves collision between a polygon to a circle shape physics bodies
static void SolvePolygonToPolygon(PhysicsManifold manifold); // Solves collision between two polygons shape physics bodies
static void IntegratePhysicsForces(PhysicsBody body); // Integrates physics forces into velocity
static void IntegratePhysicsVelocity(PhysicsBody body); // Integrates physics velocity into position and forces
static void IntegratePhysicsImpulses(PhysicsManifold manifold); // Integrates physics collisions impulses to solve collisions
static void CorrectPhysicsPositions(PhysicsManifold manifold); // Corrects physics bodies positions based on manifolds collision information
static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index); // Finds two polygon shapes incident face
static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB); // Finds polygon shapes axis least penetration
// Math required functions
static Vector2 MathVector2Product(Vector2 vector, float value); // Returns the product of a vector and a value
static float MathVector2CrossProduct(Vector2 v1, Vector2 v2); // Returns the cross product of two vectors
static float MathVector2SqrLen(Vector2 vector); // Returns the len square root of a vector
static float MathVector2DotProduct(Vector2 v1, Vector2 v2); // Returns the dot product of two vectors
static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2); // Returns the square root of distance between two vectors
static void MathVector2Normalize(Vector2 *vector); // Returns the normalized values of a vector
static Vector2 MathVector2Add(Vector2 v1, Vector2 v2); // Returns the sum of two given vectors
static Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2); // Returns the subtract of two given vectors
static Matrix2x2 MathMatFromRadians(float radians); // Returns a matrix 2x2 from a given radians value
static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix); // Returns the transpose of a given matrix 2x2
static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector); // Returns product between matrix 2x2 and vector
static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip); // Returns clipping value based on a normal and two faces
static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3); // Returns the barycenter of a triangle given by 3 points
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Initializes physics values, pointers and creates physics loop thread
PHYSACDEF void InitPhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Initialize high resolution timer
InitTimer();
#endif
TRACELOG("[PHYSAC] Physics module initialized successfully\n");
}
// Sets physics global gravity force
PHYSACDEF void SetPhysicsGravity(float x, float y)
{
gravityForce.x = x;
gravityForce.y = y;
}
// Creates a new circle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
{
PhysicsBody body = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_DEFAULT_CIRCLE_VERTICES, density);
return body;
}
// Creates a new rectangle physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
{
// NOTE: Make sure body data is initialized to 0
PhysicsBody body = (PhysicsBody)PHYSAC_CALLOC(sizeof(PhysicsBodyData), 1);
usedMemory += sizeof(PhysicsBodyData);
int id = FindAvailableBodyIndex();
if (id != -1)
{
// Initialize new body with generic values
body->id = id;
body->enabled = true;
body->position = pos;
body->shape.type = PHYSICS_POLYGON;
body->shape.body = body;
body->shape.transform = MathMatFromRadians(0.0f);
body->shape.vertexData = CreateRectanglePolygon(pos, CLITERAL(Vector2){ width, height });
// Calculate centroid and moment of inertia
Vector2 center = { 0.0f, 0.0f };
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 p1 = body->shape.vertexData.positions[i];
unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
Vector2 p2 = body->shape.vertexData.positions[nextIndex];
float D = MathVector2CrossProduct(p1, p2);
float triangleArea = D/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
body->shape.vertexData.positions[i].x -= center.x;
body->shape.vertexData.positions[i].y -= center.y;
}
body->mass = density*area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = density*inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
body->staticFriction = 0.4f;
body->dynamicFriction = 0.2f;
body->restitution = 0.0f;
body->useGravity = true;
body->isGrounded = false;
body->freezeOrient = false;
// Add new body to bodies pointers array and update bodies count
bodies[physicsBodiesCount] = body;
physicsBodiesCount++;
TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
}
else TRACELOG("[PHYSAC] Physic body could not be created, PHYSAC_MAX_BODIES reached\n");
return body;
}
// Creates a new polygon physics body with generic parameters
PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
{
PhysicsBody body = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
usedMemory += sizeof(PhysicsBodyData);
int id = FindAvailableBodyIndex();
if (id != -1)
{
// Initialize new body with generic values
body->id = id;
body->enabled = true;
body->position = pos;
body->velocity = PHYSAC_VECTOR_ZERO;
body->force = PHYSAC_VECTOR_ZERO;
body->angularVelocity = 0.0f;
body->torque = 0.0f;
body->orient = 0.0f;
body->shape.type = PHYSICS_POLYGON;
body->shape.body = body;
body->shape.transform = MathMatFromRadians(0.0f);
body->shape.vertexData = CreateDefaultPolygon(radius, sides);
// Calculate centroid and moment of inertia
Vector2 center = { 0.0f, 0.0f };
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 position1 = body->shape.vertexData.positions[i];
unsigned int nextIndex = (((i + 1) < body->shape.vertexData.vertexCount) ? (i + 1) : 0);
Vector2 position2 = body->shape.vertexData.positions[nextIndex];
float cross = MathVector2CrossProduct(position1, position2);
float triangleArea = cross/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);
float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
// Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
// Note: this is not really necessary
for (unsigned int i = 0; i < body->shape.vertexData.vertexCount; i++)
{
body->shape.vertexData.positions[i].x -= center.x;
body->shape.vertexData.positions[i].y -= center.y;
}
body->mass = density*area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = density*inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
body->staticFriction = 0.4f;
body->dynamicFriction = 0.2f;
body->restitution = 0.0f;
body->useGravity = true;
body->isGrounded = false;
body->freezeOrient = false;
// Add new body to bodies pointers array and update bodies count
bodies[physicsBodiesCount] = body;
physicsBodiesCount++;
TRACELOG("[PHYSAC] Physic body created successfully (id: %i)\n", body->id);
}
else TRACELOG("[PHYSAC] Physics body could not be created, PHYSAC_MAX_BODIES reached\n");
return body;
}
// Adds a force to a physics body
PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force)
{
if (body != NULL) body->force = MathVector2Add(body->force, force);
}
// Adds an angular force to a physics body
PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount)
{
if (body != NULL) body->torque += amount;
}
// Shatters a polygon shape physics body to little physics bodies with explosion force
PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force)
{
if (body != NULL)
{
if (body->shape.type == PHYSICS_POLYGON)
{
PhysicsVertexData vertexData = body->shape.vertexData;
bool collision = false;
for (unsigned int i = 0; i < vertexData.vertexCount; i++)
{
Vector2 positionA = body->position;
Vector2 positionB = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[i]));
unsigned int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
Vector2 positionC = MathMatVector2Product(body->shape.transform, MathVector2Add(body->position, vertexData.positions[nextIndex]));
// Check collision between each triangle
float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
float gamma = 1.0f - alpha - beta;
if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
{
collision = true;
break;
}
}
if (collision)
{
int count = vertexData.vertexCount;
Vector2 bodyPos = body->position;
Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
Matrix2x2 trans = body->shape.transform;
for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];
// Destroy shattered physics body
DestroyPhysicsBody(body);
for (int i = 0; i < count; i++)
{
int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
Vector2 center = MathTriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
center = MathVector2Add(bodyPos, center);
Vector2 offset = MathVector2Subtract(center, bodyPos);
PhysicsBody body = CreatePhysicsBodyPolygon(center, 10, 3, 10); // Create polygon physics body with relevant values
PhysicsVertexData vertexData = { 0 };
vertexData.vertexCount = 3;
vertexData.positions[0] = MathVector2Subtract(vertices[i], offset);
vertexData.positions[1] = MathVector2Subtract(vertices[nextIndex], offset);
vertexData.positions[2] = MathVector2Subtract(position, center);
// Separate vertices to avoid unnecessary physics collisions
vertexData.positions[0].x *= 0.95f;
vertexData.positions[0].y *= 0.95f;
vertexData.positions[1].x *= 0.95f;
vertexData.positions[1].y *= 0.95f;
vertexData.positions[2].x *= 0.95f;
vertexData.positions[2].y *= 0.95f;
// Calculate polygon faces normals
for (unsigned int j = 0; j < vertexData.vertexCount; j++)
{
unsigned int nextVertex = (((j + 1) < vertexData.vertexCount) ? (j + 1) : 0);
Vector2 face = MathVector2Subtract(vertexData.positions[nextVertex], vertexData.positions[j]);
vertexData.normals[j] = CLITERAL(Vector2){ face.y, -face.x };
MathVector2Normalize(&vertexData.normals[j]);
}
// Apply computed vertex data to new physics body shape
body->shape.vertexData = vertexData;
body->shape.transform = trans;
// Calculate centroid and moment of inertia
center = PHYSAC_VECTOR_ZERO;
float area = 0.0f;
float inertia = 0.0f;
for (unsigned int j = 0; j < body->shape.vertexData.vertexCount; j++)
{
// Triangle vertices, third vertex implied as (0, 0)
Vector2 p1 = body->shape.vertexData.positions[j];
unsigned int nextVertex = (((j + 1) < body->shape.vertexData.vertexCount) ? (j + 1) : 0);
Vector2 p2 = body->shape.vertexData.positions[nextVertex];
float D = MathVector2CrossProduct(p1, p2);
float triangleArea = D/2;
area += triangleArea;
// Use area to weight the centroid average, not just vertex position
center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
}
center.x *= 1.0f/area;
center.y *= 1.0f/area;
body->mass = area;
body->inverseMass = ((body->mass != 0.0f) ? 1.0f/body->mass : 0.0f);
body->inertia = inertia;
body->inverseInertia = ((body->inertia != 0.0f) ? 1.0f/body->inertia : 0.0f);
// Calculate explosion force direction
Vector2 pointA = body->position;
Vector2 pointB = MathVector2Subtract(vertexData.positions[1], vertexData.positions[0]);
pointB.x /= 2.0f;
pointB.y /= 2.0f;
Vector2 forceDirection = MathVector2Subtract(MathVector2Add(pointA, MathVector2Add(vertexData.positions[0], pointB)), body->position);
MathVector2Normalize(&forceDirection);
forceDirection.x *= force;
forceDirection.y *= force;
// Apply force to new physics body
PhysicsAddForce(body, forceDirection);
}
PHYSAC_FREE(vertices);
}
}
}
else TRACELOG("[PHYSAC] WARNING: PhysicsShatter: NULL physic body\n");
}
// Returns the current amount of created physics bodies
PHYSACDEF int GetPhysicsBodiesCount(void)
{
return physicsBodiesCount;
}
// Returns a physics body of the bodies pool at a specific index
PHYSACDEF PhysicsBody GetPhysicsBody(int index)
{
PhysicsBody body = NULL;
if (index < (int)physicsBodiesCount)
{
body = bodies[index];
if (body == NULL) TRACELOG("[PHYSAC] WARNING: GetPhysicsBody: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return body;
}
// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
PHYSACDEF int GetPhysicsShapeType(int index)
{
int result = -1;
if (index < (int)physicsBodiesCount)
{
PhysicsBody body = bodies[index];
if (body != NULL) result = body->shape.type;
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeType: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return result;
}
// Returns the amount of vertices of a physics body shape
PHYSACDEF int GetPhysicsShapeVerticesCount(int index)
{
int result = 0;
if (index < (int)physicsBodiesCount)
{
PhysicsBody body = bodies[index];
if (body != NULL)
{
switch (body->shape.type)
{
case PHYSICS_CIRCLE: result = PHYSAC_DEFAULT_CIRCLE_VERTICES; break;
case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
default: break;
}
}
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVerticesCount: NULL physic body\n");
}
else TRACELOG("[PHYSAC] WARNING: Physic body index is out of bounds\n");
return result;
}
// Returns transformed position of a body shape (body position + vertex transformed position)
PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex)
{
Vector2 position = { 0.0f, 0.0f };
if (body != NULL)
{
switch (body->shape.type)
{
case PHYSICS_CIRCLE:
{
position.x = body->position.x + cosf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
position.y = body->position.y + sinf(360.0f/PHYSAC_DEFAULT_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
} break;
case PHYSICS_POLYGON:
{
PhysicsVertexData vertexData = body->shape.vertexData;
position = MathVector2Add(body->position, MathMatVector2Product(body->shape.transform, vertexData.positions[vertex]));
} break;
default: break;
}
}
else TRACELOG("[PHYSAC] WARNING: GetPhysicsShapeVertex: NULL physic body\n");
return position;
}
// Sets physics body shape transform based on radians parameter
PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians)
{
if (body != NULL)
{
body->orient = radians;
if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = MathMatFromRadians(radians);
}
}
// Unitializes and destroys a physics body
PHYSACDEF void DestroyPhysicsBody(PhysicsBody body)
{
if (body != NULL)
{
int id = body->id;
int index = -1;
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
if (bodies[i]->id == id)
{
index = i;
break;
}
}
if (index == -1)
{
TRACELOG("[PHYSAC] WARNING: Requested body (id: %i) can not be found\n", id);
return; // Prevent access to index -1
}
// Free body allocated memory
PHYSAC_FREE(body);
usedMemory -= sizeof(PhysicsBodyData);
bodies[index] = NULL;
// Reorder physics bodies pointers array and its catched index
for (unsigned int i = index; i < physicsBodiesCount; i++)
{
if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
}
// Update physics bodies count
physicsBodiesCount--;
TRACELOG("[PHYSAC] Physic body destroyed successfully (id: %i)\n", id);
}
else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsBody: NULL physic body\n");
}
// Destroys created physics bodies and manifolds and resets global values
PHYSACDEF void ResetPhysics(void)
{
if (physicsBodiesCount > 0)
{
// Unitialize physics bodies dynamic memory allocations
for (int i = physicsBodiesCount - 1; i >= 0; i--)
{
PhysicsBody body = bodies[i];
if (body != NULL)
{
PHYSAC_FREE(body);
bodies[i] = NULL;
usedMemory -= sizeof(PhysicsBodyData);
}
}
physicsBodiesCount = 0;
}
if (physicsManifoldsCount > 0)
{
// Unitialize physics manifolds dynamic memory allocations
for (int i = physicsManifoldsCount - 1; i >= 0; i--)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL)
{
PHYSAC_FREE(manifold);
contacts[i] = NULL;
usedMemory -= sizeof(PhysicsManifoldData);
}
}
physicsManifoldsCount = 0;
}
TRACELOG("[PHYSAC] Physics module reseted successfully\n");
}
// Unitializes physics pointers and exits physics loop thread
PHYSACDEF void ClosePhysics(void)
{
// Unitialize physics manifolds dynamic memory allocations
if (physicsManifoldsCount > 0)
{
for (unsigned int i = physicsManifoldsCount - 1; i >= 0; i--)
DestroyPhysicsManifold(contacts[i]);
}
// Unitialize physics bodies dynamic memory allocations
if (physicsBodiesCount > 0)
{
for (unsigned int i = physicsBodiesCount - 1; i >= 0; i--)
DestroyPhysicsBody(bodies[i]);
}
// Trace log info
if ((physicsBodiesCount > 0) || (usedMemory != 0))
{
TRACELOG("[PHYSAC] WARNING: Physics module closed with unallocated bodies (BODIES: %i, MEMORY: %i bytes)\n", physicsBodiesCount, usedMemory);
}
else if ((physicsManifoldsCount > 0) || (usedMemory != 0))
{
TRACELOG("[PHYSAC] WARNING: Pysics module closed with unallocated manifolds (MANIFOLDS: %i, MEMORY: %i bytes)\n", physicsManifoldsCount, usedMemory);
}
else TRACELOG("[PHYSAC] Physics module closed successfully\n");
}
//----------------------------------------------------------------------------------
// Module Internal Functions Definition
//----------------------------------------------------------------------------------
// Finds a valid index for a new physics body initialization
static int FindAvailableBodyIndex()
{
int index = -1;
for (int i = 0; i < PHYSAC_MAX_BODIES; i++)
{
int currentId = i;
// Check if current id already exist in other physics body
for (unsigned int k = 0; k < physicsBodiesCount; k++)
{
if (bodies[k]->id == currentId)
{
currentId++;
break;
}
}
// If it is not used, use it as new physics body id
if (currentId == (int)i)
{
index = (int)i;
break;
}
}
return index;
}
// Creates a default polygon shape with max vertex distance from polygon pivot
static PhysicsVertexData CreateDefaultPolygon(float radius, int sides)
{
PhysicsVertexData data = { 0 };
data.vertexCount = sides;
// Calculate polygon vertices positions
for (unsigned int i = 0; i < data.vertexCount; i++)
{
data.positions[i].x = (float)cosf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
data.positions[i].y = (float)sinf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
}
// Calculate polygon faces normals
for (int i = 0; i < (int)data.vertexCount; i++)
{
int nextIndex = (((i + 1) < sides) ? (i + 1) : 0);
Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
MathVector2Normalize(&data.normals[i]);
}
return data;
}
// Creates a rectangle polygon shape based on a min and max positions
static PhysicsVertexData CreateRectanglePolygon(Vector2 pos, Vector2 size)
{
PhysicsVertexData data = { 0 };
data.vertexCount = 4;
// Calculate polygon vertices positions
data.positions[0] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y - size.y/2 };
data.positions[1] = CLITERAL(Vector2){ pos.x + size.x/2, pos.y + size.y/2 };
data.positions[2] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y + size.y/2 };
data.positions[3] = CLITERAL(Vector2){ pos.x - size.x/2, pos.y - size.y/2 };
// Calculate polygon faces normals
for (unsigned int i = 0; i < data.vertexCount; i++)
{
int nextIndex = (((i + 1) < data.vertexCount) ? (i + 1) : 0);
Vector2 face = MathVector2Subtract(data.positions[nextIndex], data.positions[i]);
data.normals[i] = CLITERAL(Vector2){ face.y, -face.x };
MathVector2Normalize(&data.normals[i]);
}
return data;
}
// Update physics step (dynamics, collisions and position corrections)
void UpdatePhysicsStep(void)
{
// Clear previous generated collisions information
for (int i = (int)physicsManifoldsCount - 1; i >= 0; i--)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL) DestroyPhysicsManifold(manifold);
}
// Reset physics bodies grounded state
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
PhysicsBody body = bodies[i];
body->isGrounded = false;
}
// Generate new collision information
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
PhysicsBody bodyA = bodies[i];
if (bodyA != NULL)
{
for (unsigned int j = i + 1; j < physicsBodiesCount; j++)
{
PhysicsBody bodyB = bodies[j];
if (bodyB != NULL)
{
if ((bodyA->inverseMass == 0) && (bodyB->inverseMass == 0)) continue;
PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
SolvePhysicsManifold(manifold);
if (manifold->contactsCount > 0)
{
// Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
manifold->penetration = manifold->penetration;
manifold->normal = manifold->normal;
manifold->contacts[0] = manifold->contacts[0];
manifold->contacts[1] = manifold->contacts[1];
manifold->contactsCount = manifold->contactsCount;
manifold->restitution = manifold->restitution;
manifold->dynamicFriction = manifold->dynamicFriction;
manifold->staticFriction = manifold->staticFriction;
}
}
}
}
}
// Integrate forces to physics bodies
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
PhysicsBody body = bodies[i];
if (body != NULL) IntegratePhysicsForces(body);
}
// Initialize physics manifolds to solve collisions
for (unsigned int i = 0; i < physicsManifoldsCount; i++)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL) InitializePhysicsManifolds(manifold);
}
// Integrate physics collisions impulses to solve collisions
for (unsigned int i = 0; i < PHYSAC_COLLISION_ITERATIONS; i++)
{
for (unsigned int j = 0; j < physicsManifoldsCount; j++)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL) IntegratePhysicsImpulses(manifold);
}
}
// Integrate velocity to physics bodies
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
PhysicsBody body = bodies[i];
if (body != NULL) IntegratePhysicsVelocity(body);
}
// Correct physics bodies positions based on manifolds collision information
for (unsigned int i = 0; i < physicsManifoldsCount; i++)
{
PhysicsManifold manifold = contacts[i];
if (manifold != NULL) CorrectPhysicsPositions(manifold);
}
// Clear physics bodies forces
for (unsigned int i = 0; i < physicsBodiesCount; i++)
{
PhysicsBody body = bodies[i];
if (body != NULL)
{
body->force = PHYSAC_VECTOR_ZERO;
body->torque = 0.0f;
}
}
}
// Update physics system
// Physics steps are launched at a fixed time step if enabled
PHYSACDEF void UpdatePhysics(void)
{
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
static double deltaTimeAccumulator = 0.0;
// Calculate current time (ms)
currentTime = GetCurrentTime();
// Calculate current delta time (ms)
const double delta = currentTime - startTime;
// Store the time elapsed since the last frame began
deltaTimeAccumulator += delta;
// Fixed time stepping loop
while (deltaTimeAccumulator >= deltaTime)
{
UpdatePhysicsStep();
deltaTimeAccumulator -= deltaTime;
}
// Record the starting of this frame
startTime = currentTime;
#else
UpdatePhysicsStep();
#endif
}
PHYSACDEF void SetPhysicsTimeStep(double delta)
{
deltaTime = delta;
}
// Finds a valid index for a new manifold initialization
static int FindAvailableManifoldIndex()
{
int index = -1;
for (int i = 0; i < PHYSAC_MAX_MANIFOLDS; i++)
{
int currentId = i;
// Check if current id already exist in other physics body
for (unsigned int k = 0; k < physicsManifoldsCount; k++)
{
if (contacts[k]->id == currentId)
{
currentId++;
break;
}
}
// If it is not used, use it as new physics body id
if (currentId == i)
{
index = i;
break;
}
}
return index;
}
// Creates a new physics manifold to solve collision
static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b)
{
PhysicsManifold manifold = (PhysicsManifold)PHYSAC_MALLOC(sizeof(PhysicsManifoldData));
usedMemory += sizeof(PhysicsManifoldData);
int id = FindAvailableManifoldIndex();
if (id != -1)
{
// Initialize new manifold with generic values
manifold->id = id;
manifold->bodyA = a;
manifold->bodyB = b;
manifold->penetration = 0;
manifold->normal = PHYSAC_VECTOR_ZERO;
manifold->contacts[0] = PHYSAC_VECTOR_ZERO;
manifold->contacts[1] = PHYSAC_VECTOR_ZERO;
manifold->contactsCount = 0;
manifold->restitution = 0.0f;
manifold->dynamicFriction = 0.0f;
manifold->staticFriction = 0.0f;
// Add new body to bodies pointers array and update bodies count
contacts[physicsManifoldsCount] = manifold;
physicsManifoldsCount++;
}
else TRACELOG("[PHYSAC] Physic manifold could not be created, PHYSAC_MAX_MANIFOLDS reached\n");
return manifold;
}
// Unitializes and destroys a physics manifold
static void DestroyPhysicsManifold(PhysicsManifold manifold)
{
if (manifold != NULL)
{
int id = manifold->id;
int index = -1;
for (unsigned int i = 0; i < physicsManifoldsCount; i++)
{
if (contacts[i]->id == id)
{
index = i;
break;
}
}
if (index == -1) return; // Prevent access to index -1
// Free manifold allocated memory
PHYSAC_FREE(manifold);
usedMemory -= sizeof(PhysicsManifoldData);
contacts[index] = NULL;
// Reorder physics manifolds pointers array and its catched index
for (unsigned int i = index; i < physicsManifoldsCount; i++)
{
if ((i + 1) < physicsManifoldsCount) contacts[i] = contacts[i + 1];
}
// Update physics manifolds count
physicsManifoldsCount--;
}
else TRACELOG("[PHYSAC] WARNING: DestroyPhysicsManifold: NULL physic manifold\n");
}
// Solves a created physics manifold between two physics bodies
static void SolvePhysicsManifold(PhysicsManifold manifold)
{
switch (manifold->bodyA->shape.type)
{
case PHYSICS_CIRCLE:
{
switch (manifold->bodyB->shape.type)
{
case PHYSICS_CIRCLE: SolveCircleToCircle(manifold); break;
case PHYSICS_POLYGON: SolveCircleToPolygon(manifold); break;
default: break;
}
} break;
case PHYSICS_POLYGON:
{
switch (manifold->bodyB->shape.type)
{
case PHYSICS_CIRCLE: SolvePolygonToCircle(manifold); break;
case PHYSICS_POLYGON: SolvePolygonToPolygon(manifold); break;
default: break;
}
} break;
default: break;
}
// Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
if (!manifold->bodyB->isGrounded) manifold->bodyB->isGrounded = (manifold->normal.y < 0);
}
// Solves collision between two circle shape physics bodies
static void SolveCircleToCircle(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
// Calculate translational vector, which is normal
Vector2 normal = MathVector2Subtract(bodyB->position, bodyA->position);
float distSqr = MathVector2SqrLen(normal);
float radius = bodyA->shape.radius + bodyB->shape.radius;
// Check if circles are not in contact
if (distSqr >= radius*radius)
{
manifold->contactsCount = 0;
return;
}
float distance = sqrtf(distSqr);
manifold->contactsCount = 1;
if (distance == 0.0f)
{
manifold->penetration = bodyA->shape.radius;
manifold->normal = CLITERAL(Vector2){ 1.0f, 0.0f };
manifold->contacts[0] = bodyA->position;
}
else
{
manifold->penetration = radius - distance;
manifold->normal = CLITERAL(Vector2){ normal.x/distance, normal.y/distance }; // Faster than using MathVector2Normalize() due to sqrt is already performed
manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
}
// Update physics body grounded state if normal direction is down
if (!bodyA->isGrounded) bodyA->isGrounded = (manifold->normal.y < 0);
}
// Solves collision between a circle to a polygon shape physics bodies
static void SolveCircleToPolygon(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
manifold->contactsCount = 0;
// Transform circle center to polygon transform space
Vector2 center = bodyA->position;
center = MathMatVector2Product(MathMatTranspose(bodyB->shape.transform), MathVector2Subtract(center, bodyB->position));
// Find edge with minimum penetration
// It is the same concept as using support points in SolvePolygonToPolygon
float separation = -PHYSAC_FLT_MAX;
int faceNormal = 0;
PhysicsVertexData vertexData = bodyB->shape.vertexData;
for (unsigned int i = 0; i < vertexData.vertexCount; i++)
{
float currentSeparation = MathVector2DotProduct(vertexData.normals[i], MathVector2Subtract(center, vertexData.positions[i]));
if (currentSeparation > bodyA->shape.radius) return;
if (currentSeparation > separation)
{
separation = currentSeparation;
faceNormal = i;
}
}
// Grab face's vertices
Vector2 v1 = vertexData.positions[faceNormal];
int nextIndex = (((faceNormal + 1) < (int)vertexData.vertexCount) ? (faceNormal + 1) : 0);
Vector2 v2 = vertexData.positions[nextIndex];
// Check to see if center is within polygon
if (separation < PHYSAC_EPSILON)
{
manifold->contactsCount = 1;
Vector2 normal = MathMatVector2Product(bodyB->shape.transform, vertexData.normals[faceNormal]);
manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
manifold->penetration = bodyA->shape.radius;
return;
}
// Determine which voronoi region of the edge center of circle lies within
float dot1 = MathVector2DotProduct(MathVector2Subtract(center, v1), MathVector2Subtract(v2, v1));
float dot2 = MathVector2DotProduct(MathVector2Subtract(center, v2), MathVector2Subtract(v1, v2));
manifold->penetration = bodyA->shape.radius - separation;
if (dot1 <= 0.0f) // Closest to v1
{
if (MathVector2SqrDistance(center, v1) > bodyA->shape.radius*bodyA->shape.radius) return;
manifold->contactsCount = 1;
Vector2 normal = MathVector2Subtract(v1, center);
normal = MathMatVector2Product(bodyB->shape.transform, normal);
MathVector2Normalize(&normal);
manifold->normal = normal;
v1 = MathMatVector2Product(bodyB->shape.transform, v1);
v1 = MathVector2Add(v1, bodyB->position);
manifold->contacts[0] = v1;
}
else if (dot2 <= 0.0f) // Closest to v2
{
if (MathVector2SqrDistance(center, v2) > bodyA->shape.radius*bodyA->shape.radius) return;
manifold->contactsCount = 1;
Vector2 normal = MathVector2Subtract(v2, center);
v2 = MathMatVector2Product(bodyB->shape.transform, v2);
v2 = MathVector2Add(v2, bodyB->position);
manifold->contacts[0] = v2;
normal = MathMatVector2Product(bodyB->shape.transform, normal);
MathVector2Normalize(&normal);
manifold->normal = normal;
}
else // Closest to face
{
Vector2 normal = vertexData.normals[faceNormal];
if (MathVector2DotProduct(MathVector2Subtract(center, v1), normal) > bodyA->shape.radius) return;
normal = MathMatVector2Product(bodyB->shape.transform, normal);
manifold->normal = CLITERAL(Vector2){ -normal.x, -normal.y };
manifold->contacts[0] = CLITERAL(Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
manifold->contactsCount = 1;
}
}
// Solves collision between a polygon to a circle shape physics bodies
static void SolvePolygonToCircle(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
manifold->bodyA = bodyB;
manifold->bodyB = bodyA;
SolveCircleToPolygon(manifold);
manifold->normal.x *= -1.0f;
manifold->normal.y *= -1.0f;
}
// Solves collision between two polygons shape physics bodies
static void SolvePolygonToPolygon(PhysicsManifold manifold)
{
if ((manifold->bodyA == NULL) || (manifold->bodyB == NULL)) return;
PhysicsShape bodyA = manifold->bodyA->shape;
PhysicsShape bodyB = manifold->bodyB->shape;
manifold->contactsCount = 0;
// Check for separating axis with A shape's face planes
int faceA = 0;
float penetrationA = FindAxisLeastPenetration(&faceA, bodyA, bodyB);
if (penetrationA >= 0.0f) return;
// Check for separating axis with B shape's face planes
int faceB = 0;
float penetrationB = FindAxisLeastPenetration(&faceB, bodyB, bodyA);
if (penetrationB >= 0.0f) return;
int referenceIndex = 0;
bool flip = false; // Always point from A shape to B shape
PhysicsShape refPoly; // Reference
PhysicsShape incPoly; // Incident
// Determine which shape contains reference face
// Checking bias range for penetration
if (penetrationA >= (penetrationB*0.95f + penetrationA*0.01f))
{
refPoly = bodyA;
incPoly = bodyB;
referenceIndex = faceA;
}
else
{
refPoly = bodyB;
incPoly = bodyA;
referenceIndex = faceB;
flip = true;
}
// World space incident face
Vector2 incidentFace[2];
FindIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex);
// Setup reference face vertices
PhysicsVertexData refData = refPoly.vertexData;
Vector2 v1 = refData.positions[referenceIndex];
referenceIndex = (((referenceIndex + 1) < (int)refData.vertexCount) ? (referenceIndex + 1) : 0);
Vector2 v2 = refData.positions[referenceIndex];
// Transform vertices to world space
v1 = MathMatVector2Product(refPoly.transform, v1);
v1 = MathVector2Add(v1, refPoly.body->position);
v2 = MathMatVector2Product(refPoly.transform, v2);
v2 = MathVector2Add(v2, refPoly.body->position);
// Calculate reference face side normal in world space
Vector2 sidePlaneNormal = MathVector2Subtract(v2, v1);
MathVector2Normalize(&sidePlaneNormal);
// Orthogonalize
Vector2 refFaceNormal = { sidePlaneNormal.y, -sidePlaneNormal.x };
float refC = MathVector2DotProduct(refFaceNormal, v1);
float negSide = MathVector2DotProduct(sidePlaneNormal, v1)*-1;
float posSide = MathVector2DotProduct(sidePlaneNormal, v2);
// MathVector2Clip incident face to reference face side planes (due to floating point error, possible to not have required points
if (MathVector2Clip(CLITERAL(Vector2){ -sidePlaneNormal.x, -sidePlaneNormal.y }, &incidentFace[0], &incidentFace[1], negSide) < 2) return;
if (MathVector2Clip(sidePlaneNormal, &incidentFace[0], &incidentFace[1], posSide) < 2) return;
// Flip normal if required
manifold->normal = (flip ? CLITERAL(Vector2){ -refFaceNormal.x, -refFaceNormal.y } : refFaceNormal);
// Keep points behind reference face
int currentPoint = 0; // MathVector2Clipped points behind reference face
float separation = MathVector2DotProduct(refFaceNormal, incidentFace[0]) - refC;
if (separation <= 0.0f)
{
manifold->contacts[currentPoint] = incidentFace[0];
manifold->penetration = -separation;
currentPoint++;
}
else manifold->penetration = 0.0f;
separation = MathVector2DotProduct(refFaceNormal, incidentFace[1]) - refC;
if (separation <= 0.0f)
{
manifold->contacts[currentPoint] = incidentFace[1];
manifold->penetration += -separation;
currentPoint++;
// Calculate total penetration average
manifold->penetration /= currentPoint;
}
manifold->contactsCount = currentPoint;
}
// Integrates physics forces into velocity
static void IntegratePhysicsForces(PhysicsBody body)
{
if ((body == NULL) || (body->inverseMass == 0.0f) || !body->enabled) return;
body->velocity.x += (float)((body->force.x*body->inverseMass)*(deltaTime/2.0));
body->velocity.y += (float)((body->force.y*body->inverseMass)*(deltaTime/2.0));
if (body->useGravity)
{
body->velocity.x += (float)(gravityForce.x*(deltaTime/1000/2.0));
body->velocity.y += (float)(gravityForce.y*(deltaTime/1000/2.0));
}
if (!body->freezeOrient) body->angularVelocity += (float)(body->torque*body->inverseInertia*(deltaTime/2.0));
}
// Initializes physics manifolds to solve collisions
static void InitializePhysicsManifolds(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
// Calculate average restitution, static and dynamic friction
manifold->restitution = sqrtf(bodyA->restitution*bodyB->restitution);
manifold->staticFriction = sqrtf(bodyA->staticFriction*bodyB->staticFriction);
manifold->dynamicFriction = sqrtf(bodyA->dynamicFriction*bodyB->dynamicFriction);
for (unsigned int i = 0; i < manifold->contactsCount; i++)
{
// Caculate radius from center of mass to contact
Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
Vector2 crossA = MathVector2Product(radiusA, bodyA->angularVelocity);
Vector2 crossB = MathVector2Product(radiusB, bodyB->angularVelocity);
Vector2 radiusV = { 0.0f, 0.0f };
radiusV.x = bodyB->velocity.x + crossB.x - bodyA->velocity.x - crossA.x;
radiusV.y = bodyB->velocity.y + crossB.y - bodyA->velocity.y - crossA.y;
// Determine if we should perform a resting collision or not;
// The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
if (MathVector2SqrLen(radiusV) < (MathVector2SqrLen(CLITERAL(Vector2){ (float)(gravityForce.x*deltaTime/1000), (float)(gravityForce.y*deltaTime/1000) }) + PHYSAC_EPSILON)) manifold->restitution = 0;
}
}
// Integrates physics collisions impulses to solve collisions
static void IntegratePhysicsImpulses(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
// Early out and positional correct if both objects have infinite mass
if (fabs(bodyA->inverseMass + bodyB->inverseMass) <= PHYSAC_EPSILON)
{
bodyA->velocity = PHYSAC_VECTOR_ZERO;
bodyB->velocity = PHYSAC_VECTOR_ZERO;
return;
}
for (unsigned int i = 0; i < manifold->contactsCount; i++)
{
// Calculate radius from center of mass to contact
Vector2 radiusA = MathVector2Subtract(manifold->contacts[i], bodyA->position);
Vector2 radiusB = MathVector2Subtract(manifold->contacts[i], bodyB->position);
// Calculate relative velocity
Vector2 radiusV = { 0.0f, 0.0f };
radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
// Relative velocity along the normal
float contactVelocity = MathVector2DotProduct(radiusV, manifold->normal);
// Do not resolve if velocities are separating
if (contactVelocity > 0.0f) return;
float raCrossN = MathVector2CrossProduct(radiusA, manifold->normal);
float rbCrossN = MathVector2CrossProduct(radiusB, manifold->normal);
float inverseMassSum = bodyA->inverseMass + bodyB->inverseMass + (raCrossN*raCrossN)*bodyA->inverseInertia + (rbCrossN*rbCrossN)*bodyB->inverseInertia;
// Calculate impulse scalar value
float impulse = -(1.0f + manifold->restitution)*contactVelocity;
impulse /= inverseMassSum;
impulse /= (float)manifold->contactsCount;
// Apply impulse to each physics body
Vector2 impulseV = { manifold->normal.x*impulse, manifold->normal.y*impulse };
if (bodyA->enabled)
{
bodyA->velocity.x += bodyA->inverseMass*(-impulseV.x);
bodyA->velocity.y += bodyA->inverseMass*(-impulseV.y);
if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -impulseV.x, -impulseV.y });
}
if (bodyB->enabled)
{
bodyB->velocity.x += bodyB->inverseMass*(impulseV.x);
bodyB->velocity.y += bodyB->inverseMass*(impulseV.y);
if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, impulseV);
}
// Apply friction impulse to each physics body
radiusV.x = bodyB->velocity.x + MathVector2Product(radiusB, bodyB->angularVelocity).x - bodyA->velocity.x - MathVector2Product(radiusA, bodyA->angularVelocity).x;
radiusV.y = bodyB->velocity.y + MathVector2Product(radiusB, bodyB->angularVelocity).y - bodyA->velocity.y - MathVector2Product(radiusA, bodyA->angularVelocity).y;
Vector2 tangent = { radiusV.x - (manifold->normal.x*MathVector2DotProduct(radiusV, manifold->normal)), radiusV.y - (manifold->normal.y*MathVector2DotProduct(radiusV, manifold->normal)) };
MathVector2Normalize(&tangent);
// Calculate impulse tangent magnitude
float impulseTangent = -MathVector2DotProduct(radiusV, tangent);
impulseTangent /= inverseMassSum;
impulseTangent /= (float)manifold->contactsCount;
float absImpulseTangent = (float)fabs(impulseTangent);
// Don't apply tiny friction impulses
if (absImpulseTangent <= PHYSAC_EPSILON) return;
// Apply coulumb's law
Vector2 tangentImpulse = { 0.0f, 0.0f };
if (absImpulseTangent < impulse*manifold->staticFriction) tangentImpulse = CLITERAL(Vector2){ tangent.x*impulseTangent, tangent.y*impulseTangent };
else tangentImpulse = CLITERAL(Vector2){ tangent.x*-impulse*manifold->dynamicFriction, tangent.y*-impulse*manifold->dynamicFriction };
// Apply friction impulse
if (bodyA->enabled)
{
bodyA->velocity.x += bodyA->inverseMass*(-tangentImpulse.x);
bodyA->velocity.y += bodyA->inverseMass*(-tangentImpulse.y);
if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathVector2CrossProduct(radiusA, CLITERAL(Vector2){ -tangentImpulse.x, -tangentImpulse.y });
}
if (bodyB->enabled)
{
bodyB->velocity.x += bodyB->inverseMass*(tangentImpulse.x);
bodyB->velocity.y += bodyB->inverseMass*(tangentImpulse.y);
if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathVector2CrossProduct(radiusB, tangentImpulse);
}
}
}
// Integrates physics velocity into position and forces
static void IntegratePhysicsVelocity(PhysicsBody body)
{
if ((body == NULL) ||!body->enabled) return;
body->position.x += (float)(body->velocity.x*deltaTime);
body->position.y += (float)(body->velocity.y*deltaTime);
if (!body->freezeOrient) body->orient += (float)(body->angularVelocity*deltaTime);
body->shape.transform = MathMatFromRadians(body->orient);
IntegratePhysicsForces(body);
}
// Corrects physics bodies positions based on manifolds collision information
static void CorrectPhysicsPositions(PhysicsManifold manifold)
{
PhysicsBody bodyA = manifold->bodyA;
PhysicsBody bodyB = manifold->bodyB;
if ((bodyA == NULL) || (bodyB == NULL)) return;
Vector2 correction = { 0.0f, 0.0f };
correction.x = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.x*PHYSAC_PENETRATION_CORRECTION;
correction.y = (PHYSAC_MAX(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.y*PHYSAC_PENETRATION_CORRECTION;
if (bodyA->enabled)
{
bodyA->position.x -= correction.x*bodyA->inverseMass;
bodyA->position.y -= correction.y*bodyA->inverseMass;
}
if (bodyB->enabled)
{
bodyB->position.x += correction.x*bodyB->inverseMass;
bodyB->position.y += correction.y*bodyB->inverseMass;
}
}
// Returns the extreme point along a direction within a polygon
static Vector2 GetSupport(PhysicsShape shape, Vector2 dir)
{
float bestProjection = -PHYSAC_FLT_MAX;
Vector2 bestVertex = { 0.0f, 0.0f };
PhysicsVertexData data = shape.vertexData;
for (unsigned int i = 0; i < data.vertexCount; i++)
{
Vector2 vertex = data.positions[i];
float projection = MathVector2DotProduct(vertex, dir);
if (projection > bestProjection)
{
bestVertex = vertex;
bestProjection = projection;
}
}
return bestVertex;
}
// Finds polygon shapes axis least penetration
static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB)
{
float bestDistance = -PHYSAC_FLT_MAX;
int bestIndex = 0;
PhysicsVertexData dataA = shapeA.vertexData;
//PhysicsVertexData dataB = shapeB.vertexData;
for (unsigned int i = 0; i < dataA.vertexCount; i++)
{
// Retrieve a face normal from A shape
Vector2 normal = dataA.normals[i];
Vector2 transNormal = MathMatVector2Product(shapeA.transform, normal);
// Transform face normal into B shape's model space
Matrix2x2 buT = MathMatTranspose(shapeB.transform);
normal = MathMatVector2Product(buT, transNormal);
// Retrieve support point from B shape along -n
Vector2 support = GetSupport(shapeB, CLITERAL(Vector2){ -normal.x, -normal.y });
// Retrieve vertex on face from A shape, transform into B shape's model space
Vector2 vertex = dataA.positions[i];
vertex = MathMatVector2Product(shapeA.transform, vertex);
vertex = MathVector2Add(vertex, shapeA.body->position);
vertex = MathVector2Subtract(vertex, shapeB.body->position);
vertex = MathMatVector2Product(buT, vertex);
// Compute penetration distance in B shape's model space
float distance = MathVector2DotProduct(normal, MathVector2Subtract(support, vertex));
// Store greatest distance
if (distance > bestDistance)
{
bestDistance = distance;
bestIndex = i;
}
}
*faceIndex = bestIndex;
return bestDistance;
}
// Finds two polygon shapes incident face
static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index)
{
PhysicsVertexData refData = ref.vertexData;
PhysicsVertexData incData = inc.vertexData;
Vector2 referenceNormal = refData.normals[index];
// Calculate normal in incident's frame of reference
referenceNormal = MathMatVector2Product(ref.transform, referenceNormal); // To world space
referenceNormal = MathMatVector2Product(MathMatTranspose(inc.transform), referenceNormal); // To incident's model space
// Find most anti-normal face on polygon
int incidentFace = 0;
float minDot = PHYSAC_FLT_MAX;
for (unsigned int i = 0; i < incData.vertexCount; i++)
{
float dot = MathVector2DotProduct(referenceNormal, incData.normals[i]);
if (dot < minDot)
{
minDot = dot;
incidentFace = i;
}
}
// Assign face vertices for incident face
*v0 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
*v0 = MathVector2Add(*v0, inc.body->position);
incidentFace = (((incidentFace + 1) < (int)incData.vertexCount) ? (incidentFace + 1) : 0);
*v1 = MathMatVector2Product(inc.transform, incData.positions[incidentFace]);
*v1 = MathVector2Add(*v1, inc.body->position);
}
// Returns clipping value based on a normal and two faces
static int MathVector2Clip(Vector2 normal, Vector2 *faceA, Vector2 *faceB, float clip)
{
int sp = 0;
Vector2 out[2] = { *faceA, *faceB };
// Retrieve distances from each endpoint to the line
float distanceA = MathVector2DotProduct(normal, *faceA) - clip;
float distanceB = MathVector2DotProduct(normal, *faceB) - clip;
// If negative (behind plane)
if (distanceA <= 0.0f) out[sp++] = *faceA;
if (distanceB <= 0.0f) out[sp++] = *faceB;
// If the points are on different sides of the plane
if ((distanceA*distanceB) < 0.0f)
{
// Push intersection point
float alpha = distanceA/(distanceA - distanceB);
out[sp] = *faceA;
Vector2 delta = MathVector2Subtract(*faceB, *faceA);
delta.x *= alpha;
delta.y *= alpha;
out[sp] = MathVector2Add(out[sp], delta);
sp++;
}
// Assign the new converted values
*faceA = out[0];
*faceB = out[1];
return sp;
}
// Returns the barycenter of a triangle given by 3 points
static Vector2 MathTriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3)
{
Vector2 result = { 0.0f, 0.0f };
result.x = (v1.x + v2.x + v3.x)/3;
result.y = (v1.y + v2.y + v3.y)/3;
return result;
}
#if !defined(PHYSAC_AVOID_TIMMING_SYSTEM)
// Initializes hi-resolution MONOTONIC timer
static void InitTimer(void)
{
#if defined(_WIN32)
QueryPerformanceFrequency((unsigned long long int *) &frequency);
#endif
#if defined(__EMSCRIPTEN__) || defined(__linux__)
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
#endif
#if defined(__APPLE__)
mach_timebase_info_data_t timebase;
mach_timebase_info(&timebase);
frequency = (timebase.denom*1e9)/timebase.numer;
#endif
baseClockTicks = (double)GetClockTicks(); // Get MONOTONIC clock time offset
startTime = GetCurrentTime(); // Get current time in milliseconds
}
// Get hi-res MONOTONIC time measure in clock ticks
static unsigned long long int GetClockTicks(void)
{
unsigned long long int value = 0;
#if defined(_WIN32)
QueryPerformanceCounter((unsigned long long int *) &value);
#endif
#if defined(__linux__)
struct timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
#endif
#if defined(__APPLE__)
value = mach_absolute_time();
#endif
return value;
}
// Get current time in milliseconds
static double GetCurrentTime(void)
{
return (double)(GetClockTicks() - baseClockTicks)/frequency*1000;
}
#endif // !PHYSAC_AVOID_TIMMING_SYSTEM
// Returns the cross product of a vector and a value
static inline Vector2 MathVector2Product(Vector2 vector, float value)
{
Vector2 result = { -value*vector.y, value*vector.x };
return result;
}
// Returns the cross product of two vectors
static inline float MathVector2CrossProduct(Vector2 v1, Vector2 v2)
{
return (v1.x*v2.y - v1.y*v2.x);
}
// Returns the len square root of a vector
static inline float MathVector2SqrLen(Vector2 vector)
{
return (vector.x*vector.x + vector.y*vector.y);
}
// Returns the dot product of two vectors
static inline float MathVector2DotProduct(Vector2 v1, Vector2 v2)
{
return (v1.x*v2.x + v1.y*v2.y);
}
// Returns the square root of distance between two vectors
static inline float MathVector2SqrDistance(Vector2 v1, Vector2 v2)
{
Vector2 dir = MathVector2Subtract(v1, v2);
return MathVector2DotProduct(dir, dir);
}
// Returns the normalized values of a vector
static void MathVector2Normalize(Vector2 *vector)
{
float length, ilength;
Vector2 aux = *vector;
length = sqrtf(aux.x*aux.x + aux.y*aux.y);
if (length == 0) length = 1.0f;
ilength = 1.0f/length;
vector->x *= ilength;
vector->y *= ilength;
}
// Returns the sum of two given vectors
static inline Vector2 MathVector2Add(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x + v2.x, v1.y + v2.y };
return result;
}
// Returns the subtract of two given vectors
static inline Vector2 MathVector2Subtract(Vector2 v1, Vector2 v2)
{
Vector2 result = { v1.x - v2.x, v1.y - v2.y };
return result;
}
// Creates a matrix 2x2 from a given radians value
static Matrix2x2 MathMatFromRadians(float radians)
{
float cos = cosf(radians);
float sin = sinf(radians);
Matrix2x2 result = { cos, -sin, sin, cos };
return result;
}
// Returns the transpose of a given matrix 2x2
static inline Matrix2x2 MathMatTranspose(Matrix2x2 matrix)
{
Matrix2x2 result = { matrix.m00, matrix.m10, matrix.m01, matrix.m11 };
return result;
}
// Multiplies a vector by a matrix 2x2
static inline Vector2 MathMatVector2Product(Matrix2x2 matrix, Vector2 vector)
{
Vector2 result = { matrix.m00*vector.x + matrix.m01*vector.y, matrix.m10*vector.x + matrix.m11*vector.y };
return result;
}
#endif // PHYSAC_IMPLEMENTATION