WinUAE/cpummu.cpp
2015-09-04 22:36:11 +02:00

1531 lines
39 KiB
C++

/*
* cpummu.cpp - MMU emulation
*
* Copyright (c) 2001-2004 Milan Jurik of ARAnyM dev team (see AUTHORS)
*
* Inspired by UAE MMU patch
*
* This file is part of the ARAnyM project which builds a new and powerful
* TOS/FreeMiNT compatible virtual machine running on almost any hardware.
*
* ARAnyM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ARAnyM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ARAnyM; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sysconfig.h"
#include "sysdeps.h"
#include "options.h"
#include "memory.h"
#include "newcpu.h"
#include "cpummu.h"
#include "debug.h"
#define MMUDUMP 0
#define DBG_MMU_VERBOSE 1
#define DBG_MMU_SANITY 1
#if 0
#define write_log printf
#endif
#ifdef FULLMMU
uae_u32 mmu_is_super;
uae_u32 mmu_tagmask, mmu_pagemask, mmu_pagemaski;
struct mmu_atc_line mmu_atc_array[ATC_TYPE][ATC_WAYS][ATC_SLOTS];
bool mmu_pagesize_8k;
int mmu060_state;
uae_u16 mmu_opcode;
bool mmu_restart;
static bool locked_rmw_cycle;
static bool ismoves;
bool mmu_ttr_enabled;
int mmu_atc_ways;
int mmu040_movem;
uaecptr mmu040_movem_ea;
uae_u32 mmu040_move16[4];
static void mmu_dump_ttr(const TCHAR * label, uae_u32 ttr)
{
DUNUSED(label);
#if MMUDEBUG > 0
uae_u32 from_addr, to_addr;
from_addr = ttr & MMU_TTR_LOGICAL_BASE;
to_addr = (ttr & MMU_TTR_LOGICAL_MASK) << 8;
write_log(_T("%s: [%08x] %08x - %08x enabled=%d supervisor=%d wp=%d cm=%02d\n"),
label, ttr,
from_addr, to_addr,
ttr & MMU_TTR_BIT_ENABLED ? 1 : 0,
(ttr & (MMU_TTR_BIT_SFIELD_ENABLED | MMU_TTR_BIT_SFIELD_SUPER)) >> MMU_TTR_SFIELD_SHIFT,
ttr & MMU_TTR_BIT_WRITE_PROTECT ? 1 : 0,
(ttr & MMU_TTR_CACHE_MASK) >> MMU_TTR_CACHE_SHIFT
);
#endif
}
void mmu_make_transparent_region(uaecptr baseaddr, uae_u32 size, int datamode)
{
uae_u32 * ttr;
uae_u32 * ttr0 = datamode ? &regs.dtt0 : &regs.itt0;
uae_u32 * ttr1 = datamode ? &regs.dtt1 : &regs.itt1;
if ((*ttr1 & MMU_TTR_BIT_ENABLED) == 0)
ttr = ttr1;
else if ((*ttr0 & MMU_TTR_BIT_ENABLED) == 0)
ttr = ttr0;
else
return;
*ttr = baseaddr & MMU_TTR_LOGICAL_BASE;
*ttr |= ((baseaddr + size - 1) & MMU_TTR_LOGICAL_BASE) >> 8;
*ttr |= MMU_TTR_BIT_ENABLED;
#if MMUDEBUG > 0
write_log(_T("MMU: map transparent mapping of %08x\n"), *ttr);
#endif
}
void mmu_tt_modified (void)
{
mmu_ttr_enabled = ((regs.dtt0 | regs.dtt1 | regs.itt0 | regs.itt1) & MMU_TTR_BIT_ENABLED) != 0;
}
#if MMUDUMP
/* This dump output makes much more sense than old one */
#define LEVELA_SIZE 7
#define LEVELB_SIZE 7
#define LEVELC_SIZE 6
#define PAGE_SIZE 12 // = 1 << 12 = 4096
#define LEVELA_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE ))) & ((1 << LEVELA_SIZE) - 1))
#define LEVELB_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE + LEVELB_SIZE ))) & ((1 << LEVELB_SIZE) - 1))
#define LEVELC_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE + LEVELB_SIZE + LEVELC_SIZE))) & ((1 << LEVELC_SIZE) - 1))
#define LEVELA(root, x) (get_long(root + LEVELA_VAL(x) * 4))
#define LEVELB(a, x) (get_long((((uae_u32)a) & ~((1 << (LEVELB_SIZE + 2)) - 1)) + LEVELB_VAL(x) * 4))
#define LEVELC(b, x) (get_long((((uae_u32)b) & ~((1 << (LEVELC_SIZE + 2)) - 1)) + LEVELC_VAL(x) * 4))
#define ISINVALID(x) ((((ULONG)x) & 3) == 0)
static uae_u32 getdesc(uae_u32 root, uae_u32 addr)
{
ULONG desc;
desc = LEVELA(root, addr);
if (ISINVALID(desc))
return desc;
desc = LEVELB(desc, addr);
if (ISINVALID(desc))
return desc;
desc = LEVELC(desc, addr);
return desc;
}
static void mmu_dump_table(const char * label, uaecptr root_ptr)
{
ULONG i;
ULONG startaddr;
ULONG odesc;
ULONG totalpages;
ULONG pagemask = (1 << PAGE_SIZE) - 1;
console_out_f(_T("MMU dump start. Root = %08x\n"), root_ptr);
totalpages = 1 << (32 - PAGE_SIZE);
startaddr = 0;
odesc = getdesc(root_ptr, startaddr);
for (i = 0; i <= totalpages; i++) {
ULONG addr = i << PAGE_SIZE;
ULONG desc = 0;
if (i < totalpages)
desc = getdesc(root_ptr, addr);
if ((desc & pagemask) != (odesc & pagemask) || i == totalpages) {
uae_u8 cm, sp;
cm = (odesc >> 5) & 3;
sp = (odesc >> 7) & 1;
console_out_f(_T("%08x - %08x: %08x WP=%d S=%d CM=%d (%08x)\n"),
startaddr, addr - 1, odesc & ~((1 << PAGE_SIZE) - 1),
(odesc & 4) ? 1 : 0, sp, cm, odesc);
startaddr = addr;
odesc = desc;
}
}
console_out_f(_T("MMU dump end\n"));
}
#else
/* {{{ mmu_dump_table */
static void mmu_dump_table(const char * label, uaecptr root_ptr)
{
DUNUSED(label);
const int ROOT_TABLE_SIZE = 128,
PTR_TABLE_SIZE = 128,
PAGE_TABLE_SIZE = 64,
ROOT_INDEX_SHIFT = 25,
PTR_INDEX_SHIFT = 18;
// const int PAGE_INDEX_SHIFT = 12;
int root_idx, ptr_idx, page_idx;
uae_u32 root_des, ptr_des, page_des;
uaecptr ptr_des_addr, page_addr,
root_log, ptr_log, page_log;
console_out_f(_T("%s: root=%x\n"), label, root_ptr);
for (root_idx = 0; root_idx < ROOT_TABLE_SIZE; root_idx++) {
root_des = phys_get_long(root_ptr + root_idx);
if ((root_des & 2) == 0)
continue; /* invalid */
console_out_f(_T("ROOT: %03d U=%d W=%d UDT=%02d\n"), root_idx,
root_des & 8 ? 1 : 0,
root_des & 4 ? 1 : 0,
root_des & 3
);
root_log = root_idx << ROOT_INDEX_SHIFT;
ptr_des_addr = root_des & MMU_ROOT_PTR_ADDR_MASK;
for (ptr_idx = 0; ptr_idx < PTR_TABLE_SIZE; ptr_idx++) {
struct {
uaecptr log, phys;
int start_idx, n_pages; /* number of pages covered by this entry */
uae_u32 match;
} page_info[PAGE_TABLE_SIZE];
int n_pages_used;
ptr_des = phys_get_long(ptr_des_addr + ptr_idx);
ptr_log = root_log | (ptr_idx << PTR_INDEX_SHIFT);
if ((ptr_des & 2) == 0)
continue; /* invalid */
page_addr = ptr_des & (mmu_pagesize_8k ? MMU_PTR_PAGE_ADDR_MASK_8 : MMU_PTR_PAGE_ADDR_MASK_4);
n_pages_used = -1;
for (page_idx = 0; page_idx < PAGE_TABLE_SIZE; page_idx++) {
page_des = phys_get_long(page_addr + page_idx);
page_log = ptr_log | (page_idx << 2); // ??? PAGE_INDEX_SHIFT
switch (page_des & 3) {
case 0: /* invalid */
continue;
case 1: case 3: /* resident */
case 2: /* indirect */
if (n_pages_used == -1 || page_info[n_pages_used].match != page_des) {
/* use the next entry */
n_pages_used++;
page_info[n_pages_used].match = page_des;
page_info[n_pages_used].n_pages = 1;
page_info[n_pages_used].start_idx = page_idx;
page_info[n_pages_used].log = page_log;
} else {
page_info[n_pages_used].n_pages++;
}
break;
}
}
if (n_pages_used == -1)
continue;
console_out_f(_T(" PTR: %03d U=%d W=%d UDT=%02d\n"), ptr_idx,
ptr_des & 8 ? 1 : 0,
ptr_des & 4 ? 1 : 0,
ptr_des & 3
);
for (page_idx = 0; page_idx <= n_pages_used; page_idx++) {
page_des = page_info[page_idx].match;
if ((page_des & MMU_PDT_MASK) == 2) {
console_out_f(_T(" PAGE: %03d-%03d log=%08x INDIRECT --> addr=%08x\n"),
page_info[page_idx].start_idx,
page_info[page_idx].start_idx + page_info[page_idx].n_pages - 1,
page_info[page_idx].log,
page_des & MMU_PAGE_INDIRECT_MASK
);
} else {
console_out_f(_T(" PAGE: %03d-%03d log=%08x addr=%08x UR=%02d G=%d U1/0=%d S=%d CM=%d M=%d U=%d W=%d\n"),
page_info[page_idx].start_idx,
page_info[page_idx].start_idx + page_info[page_idx].n_pages - 1,
page_info[page_idx].log,
page_des & (mmu_pagesize_8k ? MMU_PAGE_ADDR_MASK_8 : MMU_PAGE_ADDR_MASK_4),
(page_des & (mmu_pagesize_8k ? MMU_PAGE_UR_MASK_8 : MMU_PAGE_UR_MASK_4)) >> MMU_PAGE_UR_SHIFT,
page_des & MMU_DES_GLOBAL ? 1 : 0,
(page_des & MMU_TTR_UX_MASK) >> MMU_TTR_UX_SHIFT,
page_des & MMU_DES_SUPER ? 1 : 0,
(page_des & MMU_TTR_CACHE_MASK) >> MMU_TTR_CACHE_SHIFT,
page_des & MMU_DES_MODIFIED ? 1 : 0,
page_des & MMU_DES_USED ? 1 : 0,
page_des & MMU_DES_WP ? 1 : 0
);
}
}
}
}
}
/* }}} */
#endif
/* {{{ mmu_dump_atc */
static void mmu_dump_atc(void)
{
}
/* }}} */
/* {{{ mmu_dump_tables */
void mmu_dump_tables(void)
{
write_log(_T("URP: %08x SRP: %08x MMUSR: %x TC: %x\n"), regs.urp, regs.srp, regs.mmusr, regs.tcr);
mmu_dump_ttr(_T("DTT0"), regs.dtt0);
mmu_dump_ttr(_T("DTT1"), regs.dtt1);
mmu_dump_ttr(_T("ITT0"), regs.itt0);
mmu_dump_ttr(_T("ITT1"), regs.itt1);
mmu_dump_atc();
#if MMUDUMP
mmu_dump_table("SRP", regs.srp);
#endif
}
/* }}} */
static uaecptr REGPARAM2 mmu_lookup_pagetable(uaecptr addr, bool super, bool write, uae_u32 *status);
static ALWAYS_INLINE int mmu_get_fc(bool super, bool data)
{
return (super ? 4 : 0) | (data ? 1 : 2);
}
void mmu_bus_error(uaecptr addr, int fc, bool write, int size, bool rmw, uae_u32 status, bool nonmmu)
{
if (currprefs.mmu_model == 68040) {
uae_u16 ssw = 0;
if (ismoves) {
// MOVES special behavior
int fc2 = write ? regs.dfc : regs.sfc;
if (fc2 == 0 || fc2 == 3 || fc2 == 4 || fc2 == 7)
ssw |= MMU_SSW_TT1;
if ((fc2 & 3) != 3)
fc2 &= ~2;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU MOVES fc=%d -> %d\n"), fc, fc2);
#endif
fc = fc2;
}
ssw |= fc & MMU_SSW_TM; /* TM = FC */
switch (size) {
case sz_byte:
ssw |= MMU_SSW_SIZE_B;
break;
case sz_word:
ssw |= MMU_SSW_SIZE_W;
break;
case sz_long:
ssw |= MMU_SSW_SIZE_L;
break;
}
regs.wb3_status = write ? 0x80 | (ssw & 0x7f) : 0;
regs.wb2_status = 0;
if (!write)
ssw |= MMU_SSW_RW;
if (size == 16) { // MOVE16
ssw |= MMU_SSW_SIZE_CL;
ssw |= MMU_SSW_TT0;
regs.mmu_effective_addr &= ~15;
if (write) {
// clear normal writeback if MOVE16 write
regs.wb3_status &= ~0x80;
// wb2 = cacheline size writeback
regs.wb2_status = 0x80 | MMU_SSW_SIZE_CL | (ssw & 0x1f);
regs.wb2_address = regs.mmu_effective_addr;
write_log (_T("040 MMU MOVE16 WRITE FAULT!\n"));
}
}
if (mmu040_movem) {
ssw |= MMU_SSW_CM;
regs.mmu_effective_addr = mmu040_movem_ea;
mmu040_movem = 0;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU_SSW_CM EA=%08X\n"), mmu040_movem_ea);
#endif
}
if (locked_rmw_cycle) {
ssw |= MMU_SSW_LK;
ssw &= ~MMU_SSW_RW;
locked_rmw_cycle = false;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU_SSW_LK!\n"));
#endif
}
if (!nonmmu)
ssw |= MMU_SSW_ATC;
regs.mmu_ssw = ssw;
#if MMUDEBUG > 0
write_log(_T("BF: fc=%d w=%d logical=%08x ssw=%04x PC=%08x INS=%04X\n"), fc, write, addr, ssw, m68k_getpc(), mmu_opcode);
#endif
} else {
uae_u32 fslw = 0;
fslw |= write ? MMU_FSLW_W : MMU_FSLW_R;
fslw |= fc << 16; /* MMU_FSLW_TM */
switch (size) {
case sz_byte:
fslw |= MMU_FSLW_SIZE_B;
break;
case sz_word:
fslw |= MMU_FSLW_SIZE_W;
break;
case sz_long:
fslw |= MMU_FSLW_SIZE_L;
break;
case 16: // MOVE16
addr &= ~15;
fslw |= MMU_FSLW_SIZE_D;
fslw |= MMU_FSLW_TT_16;
break;
}
if ((fc & 3) == 2) {
// instruction faults always point to opcode address
#if MMUDEBUGMISC > 0
write_log(_T("INS FAULT %08x %08x %d\n"), addr, regs.instruction_pc, mmu060_state);
#endif
addr = regs.instruction_pc;
if (mmu060_state == 0) {
fslw |= MMU_FSLW_IO; // opword fetch
} else {
fslw |= MMU_FSLW_IO | MMU_FSLW_MA; // extension word
}
}
if (rmw) {
fslw |= MMU_FSLW_W | MMU_FSLW_R;
}
if (locked_rmw_cycle) {
fslw |= MMU_FSLW_LK;
locked_rmw_cycle = false;
write_log (_T("060 MMU_FSLW_LK!\n"));
}
fslw |= status;
regs.mmu_fslw = fslw;
#if MMUDEBUG > 0
write_log(_T("BF: fc=%d w=%d s=%d log=%08x ssw=%08x rmw=%d PC=%08x INS=%04X\n"), fc, write, 1 << size, addr, fslw, rmw, m68k_getpc(), mmu_opcode);
#endif
}
regs.mmu_fault_addr = addr;
#if 0
if (m68k_getpc () == 0x0004B0AC) {
write_log (_T("*"));
#if 0
extern void activate_debugger(void);
activate_debugger ();
#endif
}
#endif
THROW(2);
}
void mmu_bus_error_ttr_write_fault(uaecptr addr, bool super, bool data, uae_u32 val, int size, bool rmw)
{
uae_u32 status = 0;
if (currprefs.mmu_model == 68060) {
status |= MMU_FSLW_TTR;
}
regs.wb3_data = val;
mmu_bus_error(addr, mmu_get_fc (super, data), true, size, false, status, false);
}
/*
* Update the atc line for a given address by doing a mmu lookup.
*/
static uaecptr mmu_fill_atc(uaecptr addr, bool super, bool data, bool write, struct mmu_atc_line *l, uae_u32 *status)
{
uae_u32 desc;
*status = 0;
SAVE_EXCEPTION;
TRY(prb) {
desc = mmu_lookup_pagetable(addr, super, write, status);
#if MMUDEBUG > 2
write_log(_T("translate: %x,%u,%u,%u -> %x\n"), addr, super, write, data, desc);
#endif
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
/* bus error during table search */
desc = 0;
*status = MMU_FSLW_TWE;
// goto fail;
} ENDTRY
if ((desc & 1) && (!super && desc & MMU_MMUSR_S)) {
*status |= MMU_FSLW_SP;
#if MMUDEBUG > 1
write_log (_T("MMU: supervisor protected %x\n"), addr);
#endif
l->valid = 0;
l->global = 0;
} else if ((desc & 1) == 0) {
l->valid = 0;
l->global = 0;
} else {
l->valid = 1;
l->phys = desc & mmu_pagemaski;
l->global = (desc & MMU_MMUSR_G) != 0;
l->modified = (desc & MMU_MMUSR_M) != 0;
l->write_protect = (desc & MMU_MMUSR_W) != 0;
}
return desc;
}
static ALWAYS_INLINE bool mmu_fill_atc_try(uaecptr addr, bool super, bool data, bool write, struct mmu_atc_line *l1, uae_u32 *status)
{
mmu_fill_atc(addr,super,data,write,l1, status);
if (!(l1->valid)) {
#if MMUDEBUG > 2
write_log(_T("MMU: non-resident page (%x,%x)!\n"), addr, regs.pc);
#endif
goto fail;
}
if (write) {
if (l1->write_protect) {
*status |= MMU_FSLW_WP;
#if MMUDEBUG > 0
write_log(_T("MMU: write protected %x by atc \n"), addr);
#endif
mmu_dump_atc();
goto fail;
}
}
return true;
fail:
return false;
}
uaecptr REGPARAM2 mmu_translate(uaecptr addr, bool super, bool data, bool write)
{
struct mmu_atc_line *l;
uae_u32 status = 0;
// this should return a miss but choose a valid line
mmu_user_lookup(addr, super, data, write, &l);
mmu_fill_atc(addr, super, data, write, l, &status);
if (!l->valid || (write && l->write_protect)) {
#if MMUDEBUG > 2
write_log(_T("[MMU] mmu_translate error"));
#endif
mmu_bus_error(addr, mmu_get_fc(super, data), write, 0, false, status, false);
return 0;
}
return l->phys | (addr & mmu_pagemask);
}
/*
* Lookup the address by walking the page table and updating
* the page descriptors accordingly. Returns the found descriptor
* or produces a bus error.
*/
static uaecptr REGPARAM2 mmu_lookup_pagetable(uaecptr addr, bool super, bool write, uae_u32 *status)
{
uae_u32 desc, desc_addr, wp;
int i;
wp = 0;
desc = super ? regs.srp : regs.urp;
/* fetch root table descriptor */
i = (addr >> 23) & 0x1fc;
desc_addr = (desc & MMU_ROOT_PTR_ADDR_MASK) | i;
desc = phys_get_long(desc_addr);
if ((desc & 2) == 0) {
#if MMUDEBUG > 1
write_log(_T("MMU: invalid root descriptor %s for %x desc at %x desc=%x\n"), super ? _T("srp"):_T("urp"),
addr, desc_addr, desc);
#endif
*status |= MMU_FSLW_PTA;
return 0;
}
wp |= desc;
if ((desc & MMU_DES_USED) == 0)
phys_put_long(desc_addr, desc | MMU_DES_USED);
/* fetch pointer table descriptor */
i = (addr >> 16) & 0x1fc;
desc_addr = (desc & MMU_ROOT_PTR_ADDR_MASK) | i;
desc = phys_get_long(desc_addr);
if ((desc & 2) == 0) {
#if MMUDEBUG > 1
write_log(_T("MMU: invalid ptr descriptor %s for %x desc at %x desc=%x\n"), super ? _T("srp"):_T("urp"),
addr, desc_addr, desc);
#endif
*status |= MMU_FSLW_PTB;
return 0;
}
wp |= desc;
if ((desc & MMU_DES_USED) == 0)
phys_put_long(desc_addr, desc | MMU_DES_USED);
/* fetch page table descriptor */
if (mmu_pagesize_8k) {
i = (addr >> 11) & 0x7c;
desc_addr = (desc & MMU_PTR_PAGE_ADDR_MASK_8) + i;
} else {
i = (addr >> 10) & 0xfc;
desc_addr = (desc & MMU_PTR_PAGE_ADDR_MASK_4) + i;
}
desc = phys_get_long(desc_addr);
if ((desc & 3) == 2) {
/* indirect */
desc_addr = desc & MMU_PAGE_INDIRECT_MASK;
desc = phys_get_long(desc_addr);
}
if ((desc & 1) == 0) {
#if MMUDEBUG > 2
write_log(_T("MMU: invalid page descriptor log=%0x desc=%08x @%08x\n"), addr, desc, desc_addr);
#endif
if ((desc & 3) == 2) {
*status |= MMU_FSLW_IL;
#if MMUDEBUG > 1
write_log(_T("MMU: double indirect descriptor log=%0x desc=%08x @%08x\n"), addr, desc, desc_addr);
#endif
} else {
*status |= MMU_FSLW_PF;
}
return desc;
}
desc |= wp & MMU_DES_WP;
if (write) {
if (desc & MMU_DES_WP) {
if ((desc & MMU_DES_USED) == 0) {
desc |= MMU_DES_USED;
phys_put_long(desc_addr, desc);
}
} else if ((desc & (MMU_DES_USED|MMU_DES_MODIFIED)) !=
(MMU_DES_USED|MMU_DES_MODIFIED)) {
desc |= MMU_DES_USED|MMU_DES_MODIFIED;
phys_put_long(desc_addr, desc);
}
} else {
if ((desc & MMU_DES_USED) == 0) {
desc |= MMU_DES_USED;
phys_put_long(desc_addr, desc);
}
}
return desc;
}
static void misalignednotfirst(uaecptr addr)
{
#if MMUDEBUGMISC > 0
write_log (_T("misalignednotfirst %08x -> %08x %08X\n"), regs.mmu_fault_addr, addr, regs.instruction_pc);
#endif
regs.mmu_fault_addr = addr;
regs.mmu_fslw |= MMU_FSLW_MA;
regs.mmu_ssw |= MMU_SSW_MA;
}
static void misalignednotfirstcheck(uaecptr addr)
{
if (regs.mmu_fault_addr == addr)
return;
misalignednotfirst (addr);
}
uae_u16 REGPARAM2 mmu_get_word_unaligned(uaecptr addr, bool data, bool rmw)
{
uae_u16 res;
res = (uae_u16)mmu_get_byte(addr, data, sz_word, rmw) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_byte(addr + 1, data, sz_word, rmw);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
return res;
}
uae_u32 REGPARAM2 mmu_get_long_unaligned(uaecptr addr, bool data, bool rmw)
{
uae_u32 res;
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_word(addr, data, sz_long, rmw) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_word(addr + 2, data, sz_long, rmw);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_byte(addr, data, sz_long, rmw) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_byte(addr + 1, data, sz_long, rmw)) << 8;
res = (res | mmu_get_byte(addr + 2, data, sz_long, rmw)) << 8;
res |= mmu_get_byte(addr + 3, data, sz_long, rmw);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
return res;
}
uae_u32 REGPARAM2 mmu_get_ilong_unaligned(uaecptr addr)
{
uae_u32 res;
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_iword(addr, sz_long) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_iword(addr + 2, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
return res;
}
static uae_u16 REGPARAM2 mmu_get_lrmw_word_unaligned(uaecptr addr)
{
uae_u16 res;
res = (uae_u16)mmu_get_user_byte(addr, regs.s != 0, true, true, sz_word) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_byte(addr + 1, regs.s != 0, true, true, sz_word);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
return res;
}
static uae_u32 REGPARAM2 mmu_get_lrmw_long_unaligned(uaecptr addr)
{
uae_u32 res;
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_user_word(addr, regs.s != 0, true, true, sz_long) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_word(addr + 2, regs.s != 0, true, true, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_user_byte(addr, regs.s != 0, true, true, sz_long) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_user_byte(addr + 1, regs.s != 0, true, true, sz_long)) << 8;
res = (res | mmu_get_user_byte(addr + 2, regs.s != 0, true, true, sz_long)) << 8;
res |= mmu_get_user_byte(addr + 3, regs.s != 0, true, true, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
return res;
}
uae_u8 REGPARAM2 mmu_get_byte_slow(uaecptr addr, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 0, cl, &status)) {
mmu_bus_error(addr, mmu_get_fc(super, data), 0, size, rmw, status, false);
return 0;
}
return x_phys_get_byte(mmu_get_real_address(addr, cl));
}
uae_u16 REGPARAM2 mmu_get_word_slow(uaecptr addr, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 0, cl, &status)) {
mmu_bus_error(addr, mmu_get_fc(super, data), 0, size, rmw, status, false);
return 0;
}
return x_phys_get_word(mmu_get_real_address(addr, cl));
}
uae_u16 REGPARAM2 mmu_get_iword_slow(uaecptr addr, bool super,
int size, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, false, 0, cl, &status)) {
mmu_bus_error(addr, mmu_get_fc(super, false), 0, size, false, status, false);
return 0;
}
return x_phys_get_iword(mmu_get_real_address(addr, cl));
}
uae_u32 REGPARAM2 mmu_get_long_slow(uaecptr addr, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 0, cl, &status)) {
mmu_bus_error(addr, mmu_get_fc(super, data), 0, size, rmw, status, false);
return 0;
}
return x_phys_get_long(mmu_get_real_address(addr, cl));
}
uae_u32 REGPARAM2 mmu_get_ilong_slow(uaecptr addr, bool super,
int size, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, false, 0, cl, &status)) {
mmu_bus_error(addr, mmu_get_fc(super, false), 0, size, false, status, false);
return 0;
}
return x_phys_get_ilong(mmu_get_real_address(addr, cl));
}
void REGPARAM2 mmu_put_long_unaligned(uaecptr addr, uae_u32 val, bool data, bool rmw)
{
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!(addr & 1))) {
mmu_put_word(addr, val >> 16, data, sz_long, rmw);
mmu_put_word(addr + 2, val, data, sz_long, rmw);
} else {
mmu_put_byte(addr, val >> 24, data, sz_long, rmw);
mmu_put_byte(addr + 1, val >> 16, data, sz_long, rmw);
mmu_put_byte(addr + 2, val >> 8, data, sz_long, rmw);
mmu_put_byte(addr + 3, val, data, sz_long, rmw);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
void REGPARAM2 mmu_put_word_unaligned(uaecptr addr, uae_u16 val, bool data, bool rmw)
{
SAVE_EXCEPTION;
TRY(prb) {
mmu_put_byte(addr, val >> 8, data, sz_word, rmw);
mmu_put_byte(addr + 1, val, data, sz_word, rmw);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
void REGPARAM2 mmu_put_byte_slow(uaecptr addr, uae_u8 val, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 1, cl, &status)) {
regs.wb3_data = val;
mmu_bus_error(addr, mmu_get_fc(super, data), 1, size, rmw, status, false);
return;
}
x_phys_put_byte(mmu_get_real_address(addr, cl), val);
}
void REGPARAM2 mmu_put_word_slow(uaecptr addr, uae_u16 val, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 1, cl, &status)) {
regs.wb3_data = val;
mmu_bus_error(addr, mmu_get_fc(super, data), 1, size, rmw, status, false);
return;
}
x_phys_put_word(mmu_get_real_address(addr, cl), val);
}
void REGPARAM2 mmu_put_long_slow(uaecptr addr, uae_u32 val, bool super, bool data,
int size, bool rmw, struct mmu_atc_line *cl)
{
uae_u32 status;
if (!mmu_fill_atc_try(addr, super, data, 1, cl, &status)) {
regs.wb3_data = val;
mmu_bus_error(addr, mmu_get_fc(super, data), 1, size, rmw, status, false);
return;
}
x_phys_put_long(mmu_get_real_address(addr, cl), val);
}
uae_u32 REGPARAM2 sfc_get_long(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
bool data = true;
uae_u32 res;
ismoves = true;
if (likely(!is_unaligned(addr, 4))) {
res = mmu_get_user_long(addr, super, data, false, sz_long);
} else {
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_user_word(addr, super, data, false, sz_long) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_word(addr + 2, super, data, false, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_user_byte(addr, super, data, false, sz_long) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_user_byte(addr + 1, super, data, false, sz_long)) << 8;
res = (res | mmu_get_user_byte(addr + 2, super, data, false, sz_long)) << 8;
res |= mmu_get_user_byte(addr + 3, super, data, false, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
}
ismoves = false;
return res;
}
uae_u16 REGPARAM2 sfc_get_word(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
bool data = true;
uae_u16 res;
ismoves = true;
if (likely(!is_unaligned(addr, 2))) {
res = mmu_get_user_word(addr, super, data, false, sz_word);
} else {
res = (uae_u16)mmu_get_user_byte(addr, super, data, false, sz_word) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_byte(addr + 1, super, data, false, sz_word);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
ismoves = false;
return res;
}
uae_u8 REGPARAM2 sfc_get_byte(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
bool data = true;
uae_u8 res;
ismoves = true;
res = mmu_get_user_byte(addr, super, data, false, sz_byte);
ismoves = false;
return res;
}
void REGPARAM2 dfc_put_long(uaecptr addr, uae_u32 val)
{
bool super = (regs.dfc & 4) != 0;
bool data = true;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!is_unaligned(addr, 4)))
mmu_put_user_long(addr, val, super, data, sz_long);
else if (likely(!(addr & 1))) {
mmu_put_user_word(addr, val >> 16, super, data, sz_long);
mmu_put_user_word(addr + 2, val, super, data, sz_long);
} else {
mmu_put_user_byte(addr, val >> 24, super, data, sz_long);
mmu_put_user_byte(addr + 1, val >> 16, super, data, sz_long);
mmu_put_user_byte(addr + 2, val >> 8, super, data, sz_long);
mmu_put_user_byte(addr + 3, val, super, data, sz_long);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void REGPARAM2 dfc_put_word(uaecptr addr, uae_u16 val)
{
bool super = (regs.dfc & 4) != 0;
bool data = true;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!is_unaligned(addr, 2)))
mmu_put_user_word(addr, val, super, data, sz_word);
else {
mmu_put_user_byte(addr, val >> 8, super, data, sz_word);
mmu_put_user_byte(addr + 1, val, super, data, sz_word);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void REGPARAM2 dfc_put_byte(uaecptr addr, uae_u8 val)
{
bool super = (regs.dfc & 4) != 0;
bool data = true;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
mmu_put_user_byte(addr, val, super, data, sz_byte);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void mmu_get_move16(uaecptr addr, uae_u32 *v, bool data, int size)
{
struct mmu_atc_line *cl;
addr &= ~15;
for (int i = 0; i < 4; i++) {
uaecptr addr2 = addr + i * 4;
// addr,super,data
if ((!regs.mmu_enabled) || (mmu_match_ttr(addr2,regs.s != 0,data,false)!=TTR_NO_MATCH))
v[i] = x_phys_get_long(addr2);
else if (likely(mmu_lookup(addr2, data, false, &cl)))
v[i] = x_phys_get_long(mmu_get_real_address(addr2, cl));
else
v[i] = mmu_get_long_slow(addr2, regs.s != 0, data, size, false, cl);
}
}
void mmu_put_move16(uaecptr addr, uae_u32 *val, bool data, int size)
{
struct mmu_atc_line *cl;
addr &= ~15;
for (int i = 0; i < 4; i++) {
uaecptr addr2 = addr + i * 4;
// addr,super,data
if ((!regs.mmu_enabled) || (mmu_match_ttr_write(addr2,regs.s != 0,data,val[i],size,false)==TTR_OK_MATCH))
x_phys_put_long(addr2,val[i]);
else if (likely(mmu_lookup(addr2, data, true, &cl)))
x_phys_put_long(mmu_get_real_address(addr2, cl), val[i]);
else
mmu_put_long_slow(addr2, val[i], regs.s != 0, data, size, false, cl);
}
}
void REGPARAM2 mmu_op_real(uae_u32 opcode, uae_u16 extra)
{
bool super = (regs.dfc & 4) != 0;
DUNUSED(extra);
if ((opcode & 0xFE0) == 0x0500) { // PFLUSH
bool glob;
int regno;
//D(didflush = 0);
uae_u32 addr;
/* PFLUSH */
regno = opcode & 7;
glob = (opcode & 8) != 0;
if (opcode & 16) {
#if MMUINSDEBUG > 1
write_log(_T("pflusha(%u,%u) PC=%08x\n"), glob, regs.dfc, m68k_getpc ());
#endif
mmu_flush_atc_all(glob);
} else {
addr = m68k_areg(regs, regno);
#if MMUINSDEBUG > 1
write_log(_T("pflush(%u,%u,%x) PC=%08x\n"), glob, regs.dfc, addr, m68k_getpc ());
#endif
mmu_flush_atc(addr, super, glob);
}
flush_internals();
#ifdef USE_JIT
flush_icache(0);
#endif
} else if ((opcode & 0x0FD8) == 0x0548) { // PTEST (68040)
bool write;
int regno;
uae_u32 addr;
regno = opcode & 7;
write = (opcode & 32) == 0;
addr = m68k_areg(regs, regno);
#if MMUINSDEBUG > 0
write_log(_T("PTEST%c (A%d) %08x DFC=%d\n"), write ? 'W' : 'R', regno, addr, regs.dfc);
#endif
mmu_flush_atc(addr, super, true);
SAVE_EXCEPTION;
TRY(prb) {
struct mmu_atc_line *l;
uae_u32 desc;
bool data = (regs.dfc & 3) != 2;
if (mmu_match_ttr(addr,super,data, false)!=TTR_NO_MATCH) {
regs.mmusr = MMU_MMUSR_T | MMU_MMUSR_R;
} else {
uae_u32 status;
mmu_user_lookup(addr, super, data, write, &l);
desc = mmu_fill_atc(addr, super, data, write, l, &status);
if (!(l->valid)) {
regs.mmusr = MMU_MMUSR_B;
} else {
regs.mmusr = desc & (~0xfff|MMU_MMUSR_G|MMU_MMUSR_Ux|MMU_MMUSR_S|
MMU_MMUSR_CM|MMU_MMUSR_M|MMU_MMUSR_W);
regs.mmusr |= MMU_MMUSR_R;
}
}
}
CATCH(prb) {
regs.mmusr = MMU_MMUSR_B;
} ENDTRY
RESTORE_EXCEPTION;
#if MMUINSDEBUG > 0
write_log(_T("PTEST result: mmusr %08x\n"), regs.mmusr);
#endif
} else if ((opcode & 0xFFB8) == 0xF588) { // PLPA (68060)
int write = (opcode & 0x40) == 0;
int regno = opcode & 7;
uae_u32 addr = m68k_areg (regs, regno);
bool data = (regs.dfc & 3) != 2;
#if MMUINSDEBUG > 0
write_log(_T("PLPA%c param: %08x\n"), write ? 'W' : 'R', addr);
#endif
if (mmu_match_ttr(addr,super,data,false)==TTR_NO_MATCH) {
m68k_areg (regs, regno) = mmu_translate (addr, super, data, write != 0);
}
#if MMUINSDEBUG > 0
write_log(_T("PLPA%c result: %08x\n"), write ? 'W' : 'R', m68k_areg (regs, regno));
#endif
} else {
op_illg (opcode);
}
}
// fixme : global parameter?
void REGPARAM2 mmu_flush_atc(uaecptr addr, bool super, bool global)
{
int way,type,index;
uaecptr tag = ((super ? 0x80000000 : 0) | (addr >> 1)) & mmu_tagmask;
if (mmu_pagesize_8k)
index=(addr & 0x0001E000)>>13;
else
index=(addr & 0x0000F000)>>12;
for (type=0;type<ATC_TYPE;type++) {
for (way=0;way<ATC_WAYS;way++) {
if (!global && mmu_atc_array[type][way][index].global)
continue;
// if we have this
if ((tag == mmu_atc_array[type][way][index].tag) && (mmu_atc_array[type][way][index].valid)) {
mmu_atc_array[type][way][index].valid=false;
}
}
}
}
void REGPARAM2 mmu_flush_atc_all(bool global)
{
unsigned int way,slot,type;
for (type=0;type<ATC_TYPE;type++) {
for (way=0;way<ATC_WAYS;way++) {
for (slot=0;slot<ATC_SLOTS;slot++) {
if (!global && mmu_atc_array[type][way][slot].global)
continue;
mmu_atc_array[type][way][slot].valid=false;
}
}
}
}
void REGPARAM2 mmu_set_funcs(void)
{
if (currprefs.mmu_model != 68040 && currprefs.mmu_model != 68060)
return;
if (currprefs.cpu_cycle_exact || currprefs.cpu_compatible) {
x_phys_get_iword = get_word_icache040;
x_phys_get_ilong = get_long_icache040;
x_phys_get_byte = get_byte_cache_040;
x_phys_get_word = get_word_cache_040;
x_phys_get_long = get_long_cache_040;
x_phys_put_byte = put_byte_cache_040;
x_phys_put_word = put_word_cache_040;
x_phys_put_long = put_long_cache_040;
} else {
x_phys_get_iword = phys_get_word;
x_phys_get_ilong = phys_get_long;
x_phys_get_byte = phys_get_byte;
x_phys_get_word = phys_get_word;
x_phys_get_long = phys_get_long;
x_phys_put_byte = phys_put_byte;
x_phys_put_word = phys_put_word;
x_phys_put_long = phys_put_long;
}
}
void REGPARAM2 mmu_reset(void)
{
mmu_flush_atc_all(true);
mmu_set_funcs();
}
void REGPARAM2 mmu_set_tc(uae_u16 tc)
{
regs.mmu_enabled = (tc & 0x8000) != 0;
mmu_pagesize_8k = (tc & 0x4000) != 0;
mmu_tagmask = mmu_pagesize_8k ? 0xFFFF0000 : 0xFFFF8000;
mmu_pagemask = mmu_pagesize_8k ? 0x00001FFF : 0x00000FFF;
mmu_pagemaski = ~mmu_pagemask;
regs.mmu_page_size = mmu_pagesize_8k ? 8192 : 4096;
mmu_flush_atc_all(true);
write_log(_T("%d MMU: enabled=%d page8k=%d PC=%08x\n"), currprefs.mmu_model, regs.mmu_enabled, mmu_pagesize_8k, m68k_getpc());
#if MMUDUMP
if (regs.mmu_enabled)
mmu_dump_tables();
#endif
}
void REGPARAM2 mmu_set_super(bool super)
{
mmu_is_super = super ? 0x80000000 : 0;
}
void m68k_do_rte_mmu040 (uaecptr a7)
{
uae_u16 ssr = get_word_mmu040 (a7 + 8 + 4);
if (ssr & MMU_SSW_CT) {
uaecptr src_a7 = a7 + 8 - 8;
uaecptr dst_a7 = a7 + 8 + 52;
put_word_mmu040 (dst_a7 + 0, get_word_mmu040 (src_a7 + 0));
put_long_mmu040 (dst_a7 + 2, get_long_mmu040 (src_a7 + 2));
// skip this word
put_long_mmu040 (dst_a7 + 8, get_long_mmu040 (src_a7 + 8));
}
if (ssr & MMU_SSW_CM) {
mmu040_movem = 1;
mmu040_movem_ea = get_long_mmu040 (a7 + 8);
#if MMUDEBUGMISC > 0
write_log (_T("MMU restarted MOVEM EA=%08X\n"), mmu040_movem_ea);
#endif
}
}
void m68k_do_rte_mmu060 (uaecptr a7)
{
#if 0
mmu060_state = 2;
#endif
}
void flush_mmu040 (uaecptr addr, int n)
{
}
void m68k_do_rts_mmu040 (void)
{
uaecptr stack = m68k_areg (regs, 7);
uaecptr newpc = get_long_mmu040 (stack);
m68k_areg (regs, 7) += 4;
m68k_setpc (newpc);
}
void m68k_do_bsr_mmu040 (uaecptr oldpc, uae_s32 offset)
{
uaecptr newstack = m68k_areg (regs, 7) - 4;
put_long_mmu040 (newstack, oldpc);
m68k_areg (regs, 7) -= 4;
m68k_incpci (offset);
}
void flush_mmu060 (uaecptr addr, int n)
{
}
void m68k_do_rts_mmu060 (void)
{
uaecptr stack = m68k_areg (regs, 7);
uaecptr newpc = get_long_mmu060 (stack);
m68k_areg (regs, 7) += 4;
m68k_setpc (newpc);
}
void m68k_do_bsr_mmu060 (uaecptr oldpc, uae_s32 offset)
{
uaecptr newstack = m68k_areg (regs, 7) - 4;
put_long_mmu060 (newstack, oldpc);
m68k_areg (regs, 7) -= 4;
m68k_incpci (offset);
}
void uae_mmu_put_lrmw (uaecptr addr, uae_u32 v, int size, int type)
{
locked_rmw_cycle = true;
if (size == sz_byte) {
mmu_put_byte(addr, v, true, sz_byte, true);
} else if (size == sz_word) {
if (unlikely(is_unaligned(addr, 2))) {
mmu_put_word_unaligned(addr, v, true, true);
} else {
mmu_put_word(addr, v, true, sz_word, true);
}
} else {
if (unlikely(is_unaligned(addr, 4)))
mmu_put_long_unaligned(addr, v, true, true);
else
mmu_put_long(addr, v, true, sz_long, true);
}
locked_rmw_cycle = false;
}
uae_u32 uae_mmu_get_lrmw (uaecptr addr, int size, int type)
{
uae_u32 v;
locked_rmw_cycle = true;
if (size == sz_byte) {
v = mmu_get_user_byte(addr, regs.s != 0, true, true, sz_byte);
} else if (size == sz_word) {
if (unlikely(is_unaligned(addr, 2))) {
v = mmu_get_lrmw_word_unaligned(addr);
} else {
v = mmu_get_user_word(addr, regs.s != 0, true, true, sz_word);
}
} else {
if (unlikely(is_unaligned(addr, 4)))
v = mmu_get_lrmw_long_unaligned(addr);
else
v = mmu_get_user_long(addr, regs.s != 0, true, true, sz_long);
}
locked_rmw_cycle = false;
return v;
}
uae_u32 REGPARAM2 mmu060_get_rmw_bitfield (uae_u32 src, uae_u32 bdata[2], uae_s32 offset, int width)
{
uae_u32 tmp1, tmp2, res, mask;
offset &= 7;
mask = 0xffffffffu << (32 - width);
switch ((offset + width + 7) >> 3) {
case 1:
tmp1 = get_rmw_byte_mmu060 (src);
res = tmp1 << (24 + offset);
bdata[0] = tmp1 & ~(mask >> (24 + offset));
break;
case 2:
tmp1 = get_rmw_word_mmu060 (src);
res = tmp1 << (16 + offset);
bdata[0] = tmp1 & ~(mask >> (16 + offset));
break;
case 3:
tmp1 = get_rmw_word_mmu060 (src);
tmp2 = get_rmw_byte_mmu060 (src + 2);
res = tmp1 << (16 + offset);
bdata[0] = tmp1 & ~(mask >> (16 + offset));
res |= tmp2 << (8 + offset);
bdata[1] = tmp2 & ~(mask >> (8 + offset));
break;
case 4:
tmp1 = get_rmw_long_mmu060 (src);
res = tmp1 << offset;
bdata[0] = tmp1 & ~(mask >> offset);
break;
case 5:
tmp1 = get_rmw_long_mmu060 (src);
tmp2 = get_rmw_byte_mmu060 (src + 4);
res = tmp1 << offset;
bdata[0] = tmp1 & ~(mask >> offset);
res |= tmp2 >> (8 - offset);
bdata[1] = tmp2 & ~(mask << (8 - offset));
break;
default:
/* Panic? */
write_log (_T("x_get_bitfield() can't happen %d\n"), (offset + width + 7) >> 3);
res = 0;
break;
}
return res;
}
void REGPARAM2 mmu060_put_rmw_bitfield (uae_u32 dst, uae_u32 bdata[2], uae_u32 val, uae_s32 offset, int width)
{
offset = (offset & 7) + width;
switch ((offset + 7) >> 3) {
case 1:
put_rmw_byte_mmu060 (dst, bdata[0] | (val << (8 - offset)));
break;
case 2:
put_rmw_word_mmu060 (dst, bdata[0] | (val << (16 - offset)));
break;
case 3:
put_rmw_word_mmu060 (dst, bdata[0] | (val >> (offset - 16)));
put_rmw_byte_mmu060 (dst + 2, bdata[1] | (val << (24 - offset)));
break;
case 4:
put_rmw_long_mmu060 (dst, bdata[0] | (val << (32 - offset)));
break;
case 5:
put_rmw_long_mmu060 (dst, bdata[0] | (val >> (offset - 32)));
put_rmw_byte_mmu060 (dst + 4, bdata[1] | (val << (40 - offset)));
break;
default:
write_log (_T("x_put_bitfield() can't happen %d\n"), (offset + 7) >> 3);
break;
}
}
#ifndef __cplusplus
jmp_buf __exbuf;
int __exvalue;
#define MAX_TRY_STACK 256
static int s_try_stack_size=0;
static jmp_buf s_try_stack[MAX_TRY_STACK];
jmp_buf* __poptry(void) {
if (s_try_stack_size>0) {
s_try_stack_size--;
if (s_try_stack_size == 0)
return NULL;
memcpy(&__exbuf,&s_try_stack[s_try_stack_size-1],sizeof(jmp_buf));
// fprintf(stderr,"pop jmpbuf=%08x\n",s_try_stack[s_try_stack_size][0]);
return &s_try_stack[s_try_stack_size-1];
}
else {
fprintf(stderr,"try stack underflow...\n");
// return (NULL);
abort();
}
}
void __pushtry(jmp_buf* j) {
if (s_try_stack_size<MAX_TRY_STACK) {
// fprintf(stderr,"push jmpbuf=%08x\n",(*j)[0]);
memcpy(&s_try_stack[s_try_stack_size],j,sizeof(jmp_buf));
s_try_stack_size++;
} else {
fprintf(stderr,"try stack overflow...\n");
abort();
}
}
int __is_catched(void) {return (s_try_stack_size>0); }
#endif
#else
void mmu_op(uae_u32 opcode, uae_u16 /*extra*/)
{
if ((opcode & 0xFE0) == 0x0500) {
/* PFLUSH instruction */
flush_internals();
} else if ((opcode & 0x0FD8) == 0x548) {
/* PTEST instruction */
} else
op_illg(opcode);
}
#endif
/*
vim:ts=4:sw=4:
*/