WinUAE/cpummu.cpp
Toni Wilen 777022b1d5 3600b1
2017-08-13 18:52:15 +03:00

1750 lines
46 KiB
C++

/*
* cpummu.cpp - MMU emulation
*
* Copyright (c) 2001-2004 Milan Jurik of ARAnyM dev team (see AUTHORS)
*
* Inspired by UAE MMU patch
*
* This file is part of the ARAnyM project which builds a new and powerful
* TOS/FreeMiNT compatible virtual machine running on almost any hardware.
*
* ARAnyM is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* ARAnyM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with ARAnyM; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "sysconfig.h"
#include "sysdeps.h"
#include "options.h"
#include "memory.h"
#include "newcpu.h"
#include "cpummu.h"
#include "debug.h"
#define MMUDUMP 1
#define DBG_MMU_VERBOSE 1
#define DBG_MMU_SANITY 1
#if 0
#define write_log printf
#endif
#ifdef FULLMMU
uae_u32 mmu_is_super;
uae_u32 mmu_tagmask, mmu_pagemask, mmu_pagemaski;
struct mmu_atc_line mmu_atc_array[ATC_TYPE][ATC_SLOTS][ATC_WAYS];
bool mmu_pagesize_8k;
int mmu_pageshift, mmu_pageshift1m;
uae_u8 mmu_cache_state;
uae_u8 cache_default_ins, cache_default_data;
int mmu060_state;
uae_u16 mmu_opcode;
bool mmu_restart;
static bool locked_rmw_cycle;
bool rmw_cycle;
static bool ismoves;
bool mmu_ttr_enabled, mmu_ttr_enabled_ins, mmu_ttr_enabled_data;
int mmu_atc_ways[2];
int way_random;
int mmu040_movem;
uaecptr mmu040_movem_ea;
uae_u32 mmu040_move16[4];
#if MMU_ICACHE
struct mmu_icache mmu_icache_data[MMU_ICACHE_SZ];
#endif
#if MMU_IPAGECACHE
uae_u32 atc_last_ins_laddr, atc_last_ins_paddr;
uae_u8 atc_last_ins_cache;
#endif
#if MMU_DPAGECACHE
struct mmufastcache atc_data_cache_read[MMUFASTCACHE_ENTRIES];
struct mmufastcache atc_data_cache_write[MMUFASTCACHE_ENTRIES];
#endif
#if CACHE_HIT_COUNT
int mmu_ins_hit, mmu_ins_miss;
int mmu_data_read_hit, mmu_data_read_miss;
int mmu_data_write_hit, mmu_data_write_miss;
#endif
static void mmu_dump_ttr(const TCHAR * label, uae_u32 ttr)
{
DUNUSED(label);
#if MMUDEBUG > 0
uae_u32 from_addr, to_addr;
from_addr = ttr & MMU_TTR_LOGICAL_BASE;
to_addr = (ttr & MMU_TTR_LOGICAL_MASK) << 8;
console_out_f(_T("%s: [%08x] %08x - %08x enabled=%d supervisor=%d wp=%d cm=%02d\n"),
label, ttr,
from_addr, to_addr,
ttr & MMU_TTR_BIT_ENABLED ? 1 : 0,
(ttr & (MMU_TTR_BIT_SFIELD_ENABLED | MMU_TTR_BIT_SFIELD_SUPER)) >> MMU_TTR_SFIELD_SHIFT,
ttr & MMU_TTR_BIT_WRITE_PROTECT ? 1 : 0,
(ttr & MMU_TTR_CACHE_MASK) >> MMU_TTR_CACHE_SHIFT
);
#endif
}
void mmu_make_transparent_region(uaecptr baseaddr, uae_u32 size, int datamode)
{
uae_u32 * ttr;
uae_u32 * ttr0 = datamode ? &regs.dtt0 : &regs.itt0;
uae_u32 * ttr1 = datamode ? &regs.dtt1 : &regs.itt1;
if ((*ttr1 & MMU_TTR_BIT_ENABLED) == 0)
ttr = ttr1;
else if ((*ttr0 & MMU_TTR_BIT_ENABLED) == 0)
ttr = ttr0;
else
return;
*ttr = baseaddr & MMU_TTR_LOGICAL_BASE;
*ttr |= ((baseaddr + size - 1) & MMU_TTR_LOGICAL_BASE) >> 8;
*ttr |= MMU_TTR_BIT_ENABLED;
#if MMUDEBUG > 0
write_log(_T("MMU: map transparent mapping of %08x\n"), *ttr);
#endif
}
void mmu_tt_modified (void)
{
mmu_ttr_enabled_ins = ((regs.itt0 | regs.itt1) & MMU_TTR_BIT_ENABLED) != 0;
mmu_ttr_enabled_data = ((regs.dtt0 | regs.dtt1) & MMU_TTR_BIT_ENABLED) != 0;
mmu_ttr_enabled = mmu_ttr_enabled_ins || mmu_ttr_enabled_data;
}
#if MMUDUMP
/* This dump output makes much more sense than old one */
#define LEVELA_SIZE 7
#define LEVELB_SIZE 7
#define LEVELC_SIZE 6
#define PAGE_SIZE 12 // = 1 << 12 = 4096
#define LEVELA_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE ))) & ((1 << LEVELA_SIZE) - 1))
#define LEVELB_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE + LEVELB_SIZE ))) & ((1 << LEVELB_SIZE) - 1))
#define LEVELC_VAL(x) ((((uae_u32)(x)) >> (32 - (LEVELA_SIZE + LEVELB_SIZE + LEVELC_SIZE))) & ((1 << LEVELC_SIZE) - 1))
#define LEVELA(root, x) (get_long(root + LEVELA_VAL(x) * 4))
#define LEVELB(a, x) (get_long((((uae_u32)a) & ~((1 << (LEVELB_SIZE + 2)) - 1)) + LEVELB_VAL(x) * 4))
#define LEVELC(b, x) (get_long((((uae_u32)b) & ~((1 << (LEVELC_SIZE + 2)) - 1)) + LEVELC_VAL(x) * 4))
#define ISINVALID(x) ((((ULONG)x) & 3) == 0)
static uae_u32 getdesc(uae_u32 root, uae_u32 addr)
{
ULONG desc;
desc = LEVELA(root, addr);
if (ISINVALID(desc))
return desc;
desc = LEVELB(desc, addr);
if (ISINVALID(desc))
return desc;
desc = LEVELC(desc, addr);
return desc;
}
static void mmu_dump_table(const char * label, uaecptr root_ptr)
{
ULONG i;
ULONG startaddr;
ULONG odesc;
ULONG totalpages;
ULONG pagemask = (1 << PAGE_SIZE) - 1;
console_out_f(_T("MMU dump start. Root = %08x\n"), root_ptr);
totalpages = 1 << (32 - PAGE_SIZE);
startaddr = 0;
odesc = getdesc(root_ptr, startaddr);
for (i = 0; i <= totalpages; i++) {
ULONG addr = i << PAGE_SIZE;
ULONG desc = 0;
if (i < totalpages)
desc = getdesc(root_ptr, addr);
if ((desc & pagemask) != (odesc & pagemask) || i == totalpages) {
uae_u8 cm, sp;
cm = (odesc >> 5) & 3;
sp = (odesc >> 7) & 1;
console_out_f(_T("%08x - %08x: %08x WP=%d S=%d CM=%d (%08x)\n"),
startaddr, addr - 1, odesc & ~((1 << PAGE_SIZE) - 1),
(odesc & 4) ? 1 : 0, sp, cm, odesc);
startaddr = addr;
odesc = desc;
}
}
console_out_f(_T("MMU dump end\n"));
}
#else
/* {{{ mmu_dump_table */
static void mmu_dump_table(const char * label, uaecptr root_ptr)
{
DUNUSED(label);
const int ROOT_TABLE_SIZE = 128,
PTR_TABLE_SIZE = 128,
PAGE_TABLE_SIZE = 64,
ROOT_INDEX_SHIFT = 25,
PTR_INDEX_SHIFT = 18;
// const int PAGE_INDEX_SHIFT = 12;
int root_idx, ptr_idx, page_idx;
uae_u32 root_des, ptr_des, page_des;
uaecptr ptr_des_addr, page_addr,
root_log, ptr_log, page_log;
console_out_f(_T("%s: root=%x\n"), label, root_ptr);
for (root_idx = 0; root_idx < ROOT_TABLE_SIZE; root_idx++) {
root_des = phys_get_long(root_ptr + root_idx);
if ((root_des & 2) == 0)
continue; /* invalid */
console_out_f(_T("ROOT: %03d U=%d W=%d UDT=%02d\n"), root_idx,
root_des & 8 ? 1 : 0,
root_des & 4 ? 1 : 0,
root_des & 3
);
root_log = root_idx << ROOT_INDEX_SHIFT;
ptr_des_addr = root_des & MMU_ROOT_PTR_ADDR_MASK;
for (ptr_idx = 0; ptr_idx < PTR_TABLE_SIZE; ptr_idx++) {
struct {
uaecptr log, phys;
int start_idx, n_pages; /* number of pages covered by this entry */
uae_u32 match;
} page_info[PAGE_TABLE_SIZE];
int n_pages_used;
ptr_des = phys_get_long(ptr_des_addr + ptr_idx);
ptr_log = root_log | (ptr_idx << PTR_INDEX_SHIFT);
if ((ptr_des & 2) == 0)
continue; /* invalid */
page_addr = ptr_des & (mmu_pagesize_8k ? MMU_PTR_PAGE_ADDR_MASK_8 : MMU_PTR_PAGE_ADDR_MASK_4);
n_pages_used = -1;
for (page_idx = 0; page_idx < PAGE_TABLE_SIZE; page_idx++) {
page_des = phys_get_long(page_addr + page_idx);
page_log = ptr_log | (page_idx << 2); // ??? PAGE_INDEX_SHIFT
switch (page_des & 3) {
case 0: /* invalid */
continue;
case 1: case 3: /* resident */
case 2: /* indirect */
if (n_pages_used == -1 || page_info[n_pages_used].match != page_des) {
/* use the next entry */
n_pages_used++;
page_info[n_pages_used].match = page_des;
page_info[n_pages_used].n_pages = 1;
page_info[n_pages_used].start_idx = page_idx;
page_info[n_pages_used].log = page_log;
} else {
page_info[n_pages_used].n_pages++;
}
break;
}
}
if (n_pages_used == -1)
continue;
console_out_f(_T(" PTR: %03d U=%d W=%d UDT=%02d\n"), ptr_idx,
ptr_des & 8 ? 1 : 0,
ptr_des & 4 ? 1 : 0,
ptr_des & 3
);
for (page_idx = 0; page_idx <= n_pages_used; page_idx++) {
page_des = page_info[page_idx].match;
if ((page_des & MMU_PDT_MASK) == 2) {
console_out_f(_T(" PAGE: %03d-%03d log=%08x INDIRECT --> addr=%08x\n"),
page_info[page_idx].start_idx,
page_info[page_idx].start_idx + page_info[page_idx].n_pages - 1,
page_info[page_idx].log,
page_des & MMU_PAGE_INDIRECT_MASK
);
} else {
console_out_f(_T(" PAGE: %03d-%03d log=%08x addr=%08x UR=%02d G=%d U1/0=%d S=%d CM=%d M=%d U=%d W=%d\n"),
page_info[page_idx].start_idx,
page_info[page_idx].start_idx + page_info[page_idx].n_pages - 1,
page_info[page_idx].log,
page_des & (mmu_pagesize_8k ? MMU_PAGE_ADDR_MASK_8 : MMU_PAGE_ADDR_MASK_4),
(page_des & (mmu_pagesize_8k ? MMU_PAGE_UR_MASK_8 : MMU_PAGE_UR_MASK_4)) >> MMU_PAGE_UR_SHIFT,
page_des & MMU_DES_GLOBAL ? 1 : 0,
(page_des & MMU_TTR_UX_MASK) >> MMU_TTR_UX_SHIFT,
page_des & MMU_DES_SUPER ? 1 : 0,
(page_des & MMU_TTR_CACHE_MASK) >> MMU_TTR_CACHE_SHIFT,
page_des & MMU_DES_MODIFIED ? 1 : 0,
page_des & MMU_DES_USED ? 1 : 0,
page_des & MMU_DES_WP ? 1 : 0
);
}
}
}
}
}
/* }}} */
#endif
/* {{{ mmu_dump_atc */
static void mmu_dump_atc(void)
{
}
/* }}} */
/* {{{ mmu_dump_tables */
void mmu_dump_tables(void)
{
console_out_f(_T("URP: %08x SRP: %08x MMUSR: %x TC: %x\n"), regs.urp, regs.srp, regs.mmusr, regs.tcr);
mmu_dump_ttr(_T("DTT0"), regs.dtt0);
mmu_dump_ttr(_T("DTT1"), regs.dtt1);
mmu_dump_ttr(_T("ITT0"), regs.itt0);
mmu_dump_ttr(_T("ITT1"), regs.itt1);
mmu_dump_atc();
#if MMUDUMP
mmu_dump_table("SRP", regs.srp);
if (regs.urp != regs.srp)
mmu_dump_table("URP", regs.urp);
#endif
}
/* }}} */
static void flush_shortcut_cache(uaecptr addr, bool super)
{
#if MMU_IPAGECACHE
atc_last_ins_laddr = mmu_pagemask;
#endif
#if MMU_DPAGECACHE
if (addr == 0xffffffff) {
memset(&atc_data_cache_read, 0xff, sizeof atc_data_cache_read);
memset(&atc_data_cache_write, 0xff, sizeof atc_data_cache_write);
} else {
for (int i = 0; i < MMUFASTCACHE_ENTRIES; i++) {
uae_u32 idx = ((addr & mmu_pagemaski) >> mmu_pageshift1m) | (super ? 1 : 0);
if (atc_data_cache_read[i].log == idx)
atc_data_cache_read[i].log = 0xffffffff;
if (atc_data_cache_write[i].log == idx)
atc_data_cache_write[i].log = 0xffffffff;
}
}
#endif
}
static ALWAYS_INLINE int mmu_get_fc(bool super, bool data)
{
return (super ? 4 : 0) | (data ? 1 : 2);
}
void mmu_bus_error(uaecptr addr, uae_u32 val, int fc, bool write, int size,uae_u32 status060, bool nonmmu)
{
if (currprefs.mmu_model == 68040) {
uae_u16 ssw = 0;
if (ismoves) {
// MOVES special behavior
int fc2 = write ? regs.dfc : regs.sfc;
if (fc2 == 0 || fc2 == 3 || fc2 == 4 || fc2 == 7)
ssw |= MMU_SSW_TT1;
if ((fc2 & 3) != 3)
fc2 &= ~2;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU MOVES fc=%d -> %d\n"), fc, fc2);
#endif
fc = fc2;
}
ssw |= fc & MMU_SSW_TM; /* TM = FC */
switch (size) {
case sz_byte:
ssw |= MMU_SSW_SIZE_B;
break;
case sz_word:
ssw |= MMU_SSW_SIZE_W;
break;
case sz_long:
ssw |= MMU_SSW_SIZE_L;
break;
}
regs.wb3_status = write ? 0x80 | (ssw & 0x7f) : 0;
regs.wb3_data = val;
regs.wb2_status = 0;
if (!write)
ssw |= MMU_SSW_RW;
if (size == 16) { // MOVE16
ssw |= MMU_SSW_SIZE_CL;
ssw |= MMU_SSW_TT0;
regs.mmu_effective_addr &= ~15;
if (write) {
// clear normal writeback if MOVE16 write
regs.wb3_status &= ~0x80;
// wb2 = cacheline size writeback
regs.wb2_status = 0x80 | MMU_SSW_SIZE_CL | (ssw & 0x1f);
regs.wb2_address = regs.mmu_effective_addr;
write_log (_T("040 MMU MOVE16 WRITE FAULT!\n"));
}
}
if (mmu040_movem) {
ssw |= MMU_SSW_CM;
regs.mmu_effective_addr = mmu040_movem_ea;
mmu040_movem = 0;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU_SSW_CM EA=%08X\n"), mmu040_movem_ea);
#endif
}
if (locked_rmw_cycle) {
ssw |= MMU_SSW_LK;
ssw &= ~MMU_SSW_RW;
#if MMUDEBUGMISC > 0
write_log (_T("040 MMU_SSW_LK!\n"));
#endif
}
if (!nonmmu)
ssw |= MMU_SSW_ATC;
regs.mmu_ssw = ssw;
#if MMUDEBUG > 0
write_log(_T("BF: fc=%d w=%d logical=%08x ssw=%04x PC=%08x INS=%04X\n"), fc, write, addr, ssw, m68k_getpc(), mmu_opcode);
#endif
} else {
uae_u32 fslw = 0;
fslw |= write ? MMU_FSLW_W : MMU_FSLW_R;
fslw |= fc << 16; /* MMU_FSLW_TM */
switch (size) {
case sz_byte:
fslw |= MMU_FSLW_SIZE_B;
break;
case sz_word:
fslw |= MMU_FSLW_SIZE_W;
break;
case sz_long:
fslw |= MMU_FSLW_SIZE_L;
break;
case 16: // MOVE16
addr &= ~15;
fslw |= MMU_FSLW_SIZE_D;
fslw |= MMU_FSLW_TT_16;
break;
}
if ((fc & 3) == 2) {
// instruction faults always point to opcode address
#if MMUDEBUGMISC > 0
write_log(_T("INS FAULT %08x %08x %d\n"), addr, regs.instruction_pc, mmu060_state);
#endif
addr = regs.instruction_pc;
if (mmu060_state == 0) {
fslw |= MMU_FSLW_IO; // opword fetch
} else {
fslw |= MMU_FSLW_IO | MMU_FSLW_MA; // extension word
}
}
if (rmw_cycle) {
fslw |= MMU_FSLW_W | MMU_FSLW_R;
}
if (locked_rmw_cycle) {
fslw |= MMU_FSLW_LK;
write_log (_T("060 MMU_FSLW_LK!\n"));
}
fslw |= status060;
regs.mmu_fslw = fslw;
#if MMUDEBUG > 0
write_log(_T("BF: fc=%d w=%d s=%d log=%08x ssw=%08x rmw=%d PC=%08x INS=%04X\n"), fc, write, 1 << size, addr, fslw, rmw_cycle, m68k_getpc(), mmu_opcode);
#endif
}
rmw_cycle = false;
locked_rmw_cycle = false;
regs.mmu_fault_addr = addr;
#if 0
activate_debugger ();
#endif
cache_default_data &= ~CACHE_DISABLE_ALLOCATE;
THROW(2);
}
/*
* mmu access is a 4 step process:
* if mmu is not enabled just read physical
* check transparent region, if transparent, read physical
* check ATC (address translation cache), read immediately if HIT
* read from mmu with the long path (and allocate ATC entry if needed)
*/
/* check if an address matches a ttr */
static int mmu_do_match_ttr(uae_u32 ttr, uaecptr addr, bool super)
{
if (ttr & MMU_TTR_BIT_ENABLED) { /* TTR enabled */
uae_u8 msb, mask;
msb = ((addr ^ ttr) & MMU_TTR_LOGICAL_BASE) >> 24;
mask = (ttr & MMU_TTR_LOGICAL_MASK) >> 16;
if (!(msb & ~mask)) {
if ((ttr & MMU_TTR_BIT_SFIELD_ENABLED) == 0) {
if (((ttr & MMU_TTR_BIT_SFIELD_SUPER) == 0) != (super == 0)) {
return TTR_NO_MATCH;
}
}
if (ttr & MMU_TTR_CACHE_DISABLE) {
mmu_cache_state = CACHE_DISABLE_MMU;
} else {
mmu_cache_state = CACHE_ENABLE_ALL;
if (ttr && MMU_TTR_CACHE_MODE) {
mmu_cache_state |= CACHE_ENABLE_COPYBACK;
}
}
return (ttr & MMU_TTR_BIT_WRITE_PROTECT) ? TTR_NO_WRITE : TTR_OK_MATCH;
}
}
return TTR_NO_MATCH;
}
int mmu_match_ttr_ins(uaecptr addr, bool super)
{
int res;
if (!mmu_ttr_enabled_ins)
return TTR_NO_MATCH;
res = mmu_do_match_ttr(regs.itt0, addr, super);
if (res == TTR_NO_MATCH)
res = mmu_do_match_ttr(regs.itt1, addr, super);
return res;
}
int mmu_match_ttr(uaecptr addr, bool super, bool data)
{
int res;
if (!mmu_ttr_enabled)
return TTR_NO_MATCH;
if (data) {
res = mmu_do_match_ttr(regs.dtt0, addr, super);
if (res == TTR_NO_MATCH)
res = mmu_do_match_ttr(regs.dtt1, addr, super);
} else {
res = mmu_do_match_ttr(regs.itt0, addr, super);
if (res == TTR_NO_MATCH)
res = mmu_do_match_ttr(regs.itt1, addr, super);
}
return res;
}
void mmu_bus_error_ttr_write_fault(uaecptr addr, bool super, bool data, uae_u32 val, int size)
{
uae_u32 status = 0;
if (currprefs.mmu_model == 68060) {
status |= MMU_FSLW_TTR;
}
mmu_bus_error(addr, val, mmu_get_fc (super, data), true, size, status, false);
}
int mmu_match_ttr_write(uaecptr addr, bool super, bool data, uae_u32 val, int size)
{
int res = TTR_NO_MATCH;
if (mmu_ttr_enabled) {
res = mmu_match_ttr(addr, super, data);
}
if (res == TTR_NO_WRITE || (res == TTR_NO_MATCH && !regs.mmu_enabled && (regs.tcr & MMU_TCR_DWO)))
mmu_bus_error_ttr_write_fault(addr, super, data, val, size);
return res;
}
int mmu_match_ttr_maybe_write(uaecptr addr, bool super, bool data, int size, bool write)
{
int res = TTR_NO_MATCH;
if (mmu_ttr_enabled) {
res = mmu_match_ttr(addr, super, data);
}
if (write && ((res == TTR_NO_WRITE) || (res == TTR_NO_MATCH && !regs.mmu_enabled && (regs.tcr & MMU_TCR_DWO))))
mmu_bus_error_ttr_write_fault(addr, super, data, 0, size);
return res;
}
// Descriptor read accesses can use data cache but never allocate new cache lines.
static uae_u32 desc_get_long(uaecptr addr)
{
mmu_cache_state = ce_cachable[addr >>16] | CACHE_DISABLE_ALLOCATE;
return x_phys_get_long(addr);
}
// Write accesses probably are always pushed to memomory
static void desc_put_long(uaecptr addr, uae_u32 v)
{
mmu_cache_state = CACHE_DISABLE_MMU;
x_phys_put_long(addr, v);
}
/*
* Lookup the address by walking the page table and updating
* the page descriptors accordingly. Returns the found descriptor
* or produces a bus error.
*/
static uae_u32 mmu_fill_atc(uaecptr addr, bool super, uae_u32 tag, bool write, struct mmu_atc_line *l, uae_u32 *status060)
{
uae_u32 desc, desc_addr, wp;
uae_u32 status = 0;
int i;
wp = 0;
desc = super ? regs.srp : regs.urp;
/* fetch root table descriptor */
i = (addr >> 23) & 0x1fc;
desc_addr = (desc & MMU_ROOT_PTR_ADDR_MASK) | i;
SAVE_EXCEPTION;
TRY(prb) {
desc = desc_get_long(desc_addr);
if ((desc & 2) == 0) {
#if MMUDEBUG > 1
write_log(_T("MMU: invalid root descriptor %s for %x desc at %x desc=%x\n"), super ? _T("srp"):_T("urp"),
addr, desc_addr, desc);
#endif
*status060 |= MMU_FSLW_PTA;
goto fail;
}
wp |= desc;
if ((desc & MMU_DES_USED) == 0) {
desc_put_long(desc_addr, desc | MMU_DES_USED);
}
/* fetch pointer table descriptor */
i = (addr >> 16) & 0x1fc;
desc_addr = (desc & MMU_ROOT_PTR_ADDR_MASK) | i;
desc = desc_get_long(desc_addr);
if ((desc & 2) == 0) {
#if MMUDEBUG > 1
write_log(_T("MMU: invalid ptr descriptor %s for %x desc at %x desc=%x\n"), super ? _T("srp"):_T("urp"),
addr, desc_addr, desc);
#endif
*status060 |= MMU_FSLW_PTB;
goto fail;
}
wp |= desc;
if ((desc & MMU_DES_USED) == 0)
desc_put_long(desc_addr, desc | MMU_DES_USED);
/* fetch page table descriptor */
if (mmu_pagesize_8k) {
i = (addr >> 11) & 0x7c;
desc_addr = (desc & MMU_PTR_PAGE_ADDR_MASK_8) + i;
} else {
i = (addr >> 10) & 0xfc;
desc_addr = (desc & MMU_PTR_PAGE_ADDR_MASK_4) + i;
}
desc = desc_get_long(desc_addr);
if ((desc & 3) == 2) {
/* indirect */
desc_addr = desc & MMU_PAGE_INDIRECT_MASK;
desc = desc_get_long(desc_addr);
}
if ((desc & 1) == 1) {
wp |= desc;
if (write) {
if ((wp & MMU_DES_WP) || ((desc & MMU_DES_SUPER) && !super)) {
if ((desc & MMU_DES_USED) == 0) {
desc |= MMU_DES_USED;
desc_put_long(desc_addr, desc);
}
} else if ((desc & (MMU_DES_USED|MMU_DES_MODIFIED)) !=
(MMU_DES_USED|MMU_DES_MODIFIED)) {
desc |= MMU_DES_USED|MMU_DES_MODIFIED;
desc_put_long(desc_addr, desc);
}
} else {
if ((desc & MMU_DES_USED) == 0) {
desc |= MMU_DES_USED;
desc_put_long(desc_addr, desc);
}
}
desc |= wp & MMU_DES_WP;
} else {
if ((desc & 3) == 2) {
*status060 |= MMU_FSLW_IL;
#if MMUDEBUG > 1
write_log(_T("MMU: double indirect descriptor log=%0x desc=%08x @%08x\n"), addr, desc, desc_addr);
#endif
} else {
*status060 |= MMU_FSLW_PF;
#if MMUDEBUG > 2
write_log(_T("MMU: invalid page descriptor log=%0x desc=%08x @%08x\n"), addr, desc, desc_addr);
#endif
}
fail:
desc = 0;
}
/* this will cause a bus error exception */
if (!super && (desc & MMU_DES_SUPER)) {
*status060 |= MMU_FSLW_SP;
} else if (write && (desc & MMU_DES_WP)) {
*status060 |= MMU_FSLW_WP;
}
// 68040 always creates ATC entry. 68060 only if valid descriptor was found.
if (currprefs.mmu_model == 68040 || (desc & MMU_MMUSR_R)) {
/* Create new ATC entry and return status */
l->status = desc & (MMU_MMUSR_G|MMU_MMUSR_Ux|MMU_MMUSR_S|MMU_MMUSR_CM|MMU_MMUSR_M|MMU_MMUSR_W|MMU_MMUSR_R);
l->phys = desc & mmu_pagemaski;
l->valid = 1;
l->tag = tag;
status = l->phys | l->status;
}
RESTORE_EXCEPTION;
} CATCH(prb) {
RESTORE_EXCEPTION;
/* bus error during table search */
if (currprefs.mmu_model == 68040) {
l->status = 0;
l->phys = 0;
l->valid = 1;
l->tag = tag;
}
status = MMU_MMUSR_B;
*status060 |= MMU_FSLW_LK | MMU_FSLW_TWE;
#if MMUDEBUG > 0
write_log(_T("MMU: bus error during table search.\n"));
#endif
} ENDTRY
#if MMUDEBUG > 2
write_log(_T("translate: %x,%u,%u -> %x\n"), addr, super, write, desc);
#endif
flush_shortcut_cache(addr, super);
return status;
}
static void mmu_add_cache(uaecptr addr, uaecptr phys, bool super, bool data, bool write)
{
if (!data) {
#if MMU_IPAGECACHE
uae_u32 laddr = (addr & mmu_pagemaski) | (super ? 1 : 0);
atc_last_ins_laddr = laddr;
atc_last_ins_paddr = phys;
atc_last_ins_cache = mmu_cache_state;
#else
;
#endif
#if MMU_DPAGECACHE
} else {
uae_u32 idx1 = ((addr & mmu_pagemaski) >> mmu_pageshift1m) | (super ? 1 : 0);
uae_u32 idx2 = idx1 & (MMUFASTCACHE_ENTRIES - 1);
if (write) {
if (idx2 < MMUFASTCACHE_ENTRIES - 1) {
atc_data_cache_write[idx2].log = idx1;
atc_data_cache_write[idx2].phys = phys;
atc_data_cache_write[idx2].cache_state = mmu_cache_state;
}
} else {
if (idx2 < MMUFASTCACHE_ENTRIES - 1) {
atc_data_cache_read[idx2].log = idx1;
atc_data_cache_read[idx2].phys = phys;
atc_data_cache_read[idx2].cache_state = mmu_cache_state;
}
}
#endif
}
}
uaecptr mmu_translate(uaecptr addr, uae_u32 val, bool super, bool data, bool write, int size)
{
int way, i, index, way_invalid;
struct mmu_atc_line *l;
uae_u32 status060 = 0;
uae_u32 tag = ((super ? 0x80000000 : 0x00000000) | (addr >> 1)) & mmu_tagmask;
if (mmu_pagesize_8k)
index=(addr & 0x0001E000)>>13;
else
index=(addr & 0x0000F000)>>12;
way_invalid = ATC_WAYS;
way_random++;
way = mmu_atc_ways[data];
for (i = 0; i < ATC_WAYS; i++) {
// if we have this
l = &mmu_atc_array[data][index][way];
if (l->valid) {
if (tag == l->tag) {
atc_retry:
// check if we need to cause a page fault
if (((l->status&(MMU_MMUSR_W|MMU_MMUSR_S|MMU_MMUSR_R))!=MMU_MMUSR_R)) {
if (((l->status&MMU_MMUSR_W) && write) ||
((l->status&MMU_MMUSR_S) && !super) ||
!(l->status&MMU_MMUSR_R)) {
if ((l->status&MMU_MMUSR_S) && !super)
status060 |= MMU_FSLW_SP;
if ((l->status&MMU_MMUSR_W) && write)
status060 |= MMU_FSLW_WP;
mmu_bus_error(addr, val, mmu_get_fc(super, data), write, size, status060, false);
return 0; // never reach, bus error longjumps out of the function
}
}
// if first write to this page initiate table search to set M bit (but modify this slot)
if (!(l->status&MMU_MMUSR_M) && write) {
way_invalid = way;
break;
}
// save way for next access (likely in same page)
mmu_atc_ways[data] = way;
if (l->status & MMU_MMUSR_CM_DISABLE) {
mmu_cache_state = CACHE_DISABLE_MMU;
} else {
mmu_cache_state = CACHE_ENABLE_ALL;
if (l->status & MMU_MMUSR_CM_MODE) {
mmu_cache_state |= CACHE_ENABLE_COPYBACK;
}
}
mmu_add_cache(addr, l->phys, super, data, write);
// return translated addr
return l->phys | (addr & mmu_pagemask);
} else {
way_invalid = way;
}
}
way++;
way %= ATC_WAYS;
}
// no entry found, we need to create a new one, first find an atc line to replace
way_random %= ATC_WAYS;
way = (way_invalid < ATC_WAYS) ? way_invalid : way_random;
// then initiate table search and create a new entry
l = &mmu_atc_array[data][index][way];
mmu_fill_atc(addr, super, tag, write, l, &status060);
if (status060 && currprefs.mmu_model == 68060) {
mmu_bus_error(addr, val, mmu_get_fc(super, data), write, size, status060, false);
}
// and retry the ATC search
way_random++;
goto atc_retry;
}
static void misalignednotfirst(uaecptr addr)
{
#if MMUDEBUGMISC > 0
write_log (_T("misalignednotfirst %08x -> %08x %08X\n"), regs.mmu_fault_addr, addr, regs.instruction_pc);
#endif
regs.mmu_fault_addr = addr;
regs.mmu_fslw |= MMU_FSLW_MA;
regs.mmu_ssw |= MMU_SSW_MA;
}
static void misalignednotfirstcheck(uaecptr addr)
{
if (regs.mmu_fault_addr == addr)
return;
misalignednotfirst (addr);
}
uae_u16 REGPARAM2 mmu_get_word_unaligned(uaecptr addr, bool data)
{
uae_u16 res;
res = (uae_u16)mmu_get_byte(addr, data, sz_word) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_byte(addr + 1, data, sz_word);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
return res;
}
uae_u32 REGPARAM2 mmu_get_long_unaligned(uaecptr addr, bool data)
{
uae_u32 res;
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_word(addr, data, sz_long) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_word(addr + 2, data, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_byte(addr, data, sz_long) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_byte(addr + 1, data, sz_long)) << 8;
res = (res | mmu_get_byte(addr + 2, data, sz_long)) << 8;
res |= mmu_get_byte(addr + 3, data, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
return res;
}
uae_u32 REGPARAM2 mmu_get_ilong_unaligned(uaecptr addr)
{
uae_u32 res;
res = (uae_u32)mmu_get_iword(addr, sz_long) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_iword(addr + 2, sz_long);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
return res;
}
static uae_u16 REGPARAM2 mmu_get_lrmw_word_unaligned(uaecptr addr)
{
uae_u16 res;
res = (uae_u16)mmu_get_user_byte(addr, regs.s != 0, true, sz_word, true) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_byte(addr + 1, regs.s != 0, true, sz_word, true);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
return res;
}
static uae_u32 REGPARAM2 mmu_get_lrmw_long_unaligned(uaecptr addr)
{
uae_u32 res;
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_user_word(addr, regs.s != 0, true, sz_long, true) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_word(addr + 2, regs.s != 0, true, sz_long, true);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_user_byte(addr, regs.s != 0, true, sz_long, true) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_user_byte(addr + 1, regs.s != 0, true, sz_long, true)) << 8;
res = (res | mmu_get_user_byte(addr + 2, regs.s != 0, true, sz_long, true)) << 8;
res |= mmu_get_user_byte(addr + 3, regs.s != 0, true, sz_long, true);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
return res;
}
static void REGPARAM2 mmu_put_lrmw_long_unaligned(uaecptr addr, uae_u32 val)
{
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!(addr & 1))) {
mmu_put_user_word(addr, val >> 16, regs.s != 0, sz_long, true);
mmu_put_user_word(addr + 2, val, regs.s != 0, sz_long, true);
} else {
mmu_put_user_byte(addr, val >> 24, regs.s != 0, sz_long, true);
mmu_put_user_byte(addr + 1, val >> 16, regs.s != 0, sz_long, true);
mmu_put_user_byte(addr + 2, val >> 8, regs.s != 0, sz_long, true);
mmu_put_user_byte(addr + 3, val, regs.s != 0, sz_long, true);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
static void REGPARAM2 mmu_put_lrmw_word_unaligned(uaecptr addr, uae_u16 val)
{
SAVE_EXCEPTION;
TRY(prb) {
mmu_put_user_byte(addr, val >> 8, regs.s != 0, sz_word, true);
mmu_put_user_byte(addr + 1, val, regs.s != 0, sz_word, true);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
void REGPARAM2 mmu_put_long_unaligned(uaecptr addr, uae_u32 val, bool data)
{
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!(addr & 1))) {
mmu_put_word(addr, val >> 16, data, sz_long);
mmu_put_word(addr + 2, val, data, sz_long);
} else {
mmu_put_byte(addr, val >> 24, data, sz_long);
mmu_put_byte(addr + 1, val >> 16, data, sz_long);
mmu_put_byte(addr + 2, val >> 8, data, sz_long);
mmu_put_byte(addr + 3, val, data, sz_long);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
void REGPARAM2 mmu_put_word_unaligned(uaecptr addr, uae_u16 val, bool data)
{
SAVE_EXCEPTION;
TRY(prb) {
mmu_put_byte(addr, val >> 8, data, sz_word);
mmu_put_byte(addr + 1, val, data, sz_word);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
}
uae_u32 REGPARAM2 sfc_get_long(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
uae_u32 res;
ismoves = true;
if (likely(!is_unaligned(addr, 4))) {
res = mmu_get_user_long(addr, super, false, sz_long, false);
} else {
if (likely(!(addr & 1))) {
res = (uae_u32)mmu_get_user_word(addr, super, false, sz_long, false) << 16;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_word(addr + 2, super, false, sz_long, false);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
} else {
res = (uae_u32)mmu_get_user_byte(addr, super, false, sz_long, false) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res = (res | mmu_get_user_byte(addr + 1, super, false, sz_long, false)) << 8;
res = (res | mmu_get_user_byte(addr + 2, super, false, sz_long, false)) << 8;
res |= mmu_get_user_byte(addr + 3, super, false, sz_long, false);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
}
ismoves = false;
return res;
}
uae_u16 REGPARAM2 sfc_get_word(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
uae_u16 res;
ismoves = true;
if (likely(!is_unaligned(addr, 2))) {
res = mmu_get_user_word(addr, super, false, sz_word, false);
} else {
res = (uae_u16)mmu_get_user_byte(addr, super, false, sz_word, false) << 8;
SAVE_EXCEPTION;
TRY(prb) {
res |= mmu_get_user_byte(addr + 1, super, false, sz_word, false);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
misalignednotfirst(addr);
THROW_AGAIN(prb);
} ENDTRY
}
ismoves = false;
return res;
}
uae_u8 REGPARAM2 sfc_get_byte(uaecptr addr)
{
bool super = (regs.sfc & 4) != 0;
uae_u8 res;
ismoves = true;
res = mmu_get_user_byte(addr, super, false, sz_byte, false);
ismoves = false;
return res;
}
void REGPARAM2 dfc_put_long(uaecptr addr, uae_u32 val)
{
bool super = (regs.dfc & 4) != 0;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!is_unaligned(addr, 4))) {
mmu_put_user_long(addr, val, super, sz_long, false);
} else if (likely(!(addr & 1))) {
mmu_put_user_word(addr, val >> 16, super, sz_long, false);
mmu_put_user_word(addr + 2, val, super, sz_long, false);
} else {
mmu_put_user_byte(addr, val >> 24, super, sz_long, false);
mmu_put_user_byte(addr + 1, val >> 16, super, sz_long, false);
mmu_put_user_byte(addr + 2, val >> 8, super, sz_long, false);
mmu_put_user_byte(addr + 3, val, super, sz_long, false);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void REGPARAM2 dfc_put_word(uaecptr addr, uae_u16 val)
{
bool super = (regs.dfc & 4) != 0;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
if (likely(!is_unaligned(addr, 2))) {
mmu_put_user_word(addr, val, super, sz_word, false);
} else {
mmu_put_user_byte(addr, val >> 8, super, sz_word, false);
mmu_put_user_byte(addr + 1, val, super, sz_word, false);
}
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
misalignednotfirstcheck(addr);
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void REGPARAM2 dfc_put_byte(uaecptr addr, uae_u8 val)
{
bool super = (regs.dfc & 4) != 0;
ismoves = true;
SAVE_EXCEPTION;
TRY(prb) {
mmu_put_user_byte(addr, val, super, sz_byte, false);
RESTORE_EXCEPTION;
}
CATCH(prb) {
RESTORE_EXCEPTION;
regs.wb3_data = val;
THROW_AGAIN(prb);
} ENDTRY
ismoves = false;
}
void mmu_get_move16(uaecptr addr, uae_u32 *v, bool data, int size)
{
bool super = regs.s != 0;
addr &= ~15;
if ((!mmu_ttr_enabled || mmu_match_ttr(addr,super,data) == TTR_NO_MATCH) && regs.mmu_enabled) {
addr = mmu_translate(addr, 0, super, data, false, size);
}
// MOVE16 read and cache miss: do not allocate new cache line
mmu_cache_state |= CACHE_DISABLE_ALLOCATE;
for (int i = 0; i < 4; i++) {
v[i] = x_phys_get_long(addr + i * 4);
}
}
void mmu_put_move16(uaecptr addr, uae_u32 *val, bool data, int size)
{
bool super = regs.s != 0;
addr &= ~15;
if ((!mmu_ttr_enabled || mmu_match_ttr_write(addr,super,data,val[0],size) == TTR_NO_MATCH) && regs.mmu_enabled) {
addr = mmu_translate(addr, val[0], super, data, true, size);
}
// MOVE16 write invalidates existing line and also does not allocate new cache lines.
mmu_cache_state = CACHE_DISABLE_MMU;
for (int i = 0; i < 4; i++) {
x_phys_put_long(addr + i * 4, val[i]);
}
}
void REGPARAM2 mmu_op_real(uae_u32 opcode, uae_u16 extra)
{
bool super = (regs.dfc & 4) != 0;
DUNUSED(extra);
if ((opcode & 0xFE0) == 0x0500) { // PFLUSH
bool glob;
int regno;
//D(didflush = 0);
uae_u32 addr;
/* PFLUSH */
regno = opcode & 7;
glob = (opcode & 8) != 0;
if (opcode & 16) {
#if MMUINSDEBUG > 1
write_log(_T("pflusha(%u,%u) PC=%08x\n"), glob, regs.dfc, m68k_getpc ());
#endif
mmu_flush_atc_all(glob);
} else {
addr = m68k_areg(regs, regno);
#if MMUINSDEBUG > 1
write_log(_T("pflush(%u,%u,%x) PC=%08x\n"), glob, regs.dfc, addr, m68k_getpc ());
#endif
mmu_flush_atc(addr, super, glob);
}
flush_internals();
#ifdef USE_JIT
flush_icache(0);
#endif
} else if ((opcode & 0x0FD8) == 0x0548) { // PTEST (68040)
bool write;
int regno;
uae_u32 addr;
uae_u32 status060 = 0;
regno = opcode & 7;
write = (opcode & 32) == 0;
addr = m68k_areg(regs, regno);
#if MMUINSDEBUG > 0
write_log(_T("PTEST%c (A%d) %08x DFC=%d\n"), write ? 'W' : 'R', regno, addr, regs.dfc);
#endif
mmu_flush_atc(addr, super, true);
bool data = (regs.dfc & 3) != 2;
int ttr_match = mmu_match_ttr(addr,super,data);
if (ttr_match != TTR_NO_MATCH) {
if (ttr_match == TTR_NO_WRITE && write) {
regs.mmusr = MMU_MMUSR_B;
} else {
regs.mmusr = MMU_MMUSR_T | MMU_MMUSR_R;
}
} else if (!currprefs.mmu_ec) {
int way;
uae_u32 index;
uae_u32 tag = ((super ? 0x80000000 : 0x00000000) | (addr >> 1)) & mmu_tagmask;
if (mmu_pagesize_8k)
index=(addr & 0x0001E000)>>13;
else
index=(addr & 0x0000F000)>>12;
for (way = 0; way < ATC_WAYS; way++) {
if (!mmu_atc_array[data][index][way].valid)
break;
}
if (way >= ATC_WAYS) {
way = way_random % ATC_WAYS;
}
regs.mmusr = mmu_fill_atc(addr, super, tag, write, &mmu_atc_array[data][index][way], &status060);
#if MMUINSDEBUG > 0
write_log(_T("PTEST result: mmusr %08x\n"), regs.mmusr);
#endif
}
} else if ((opcode & 0xFFB8) == 0xF588) { // PLPA (68060)
int write = (opcode & 0x40) == 0;
int regno = opcode & 7;
uae_u32 addr = m68k_areg (regs, regno);
bool data = (regs.dfc & 3) != 2;
int ttr;
#if MMUINSDEBUG > 0
write_log(_T("PLPA%c param: %08x\n"), write ? 'W' : 'R', addr);
#endif
if (write)
ttr = mmu_match_ttr_write(addr, super, data, 0, 1);
else
ttr = mmu_match_ttr(addr,super,data);
if (ttr == TTR_NO_MATCH) {
if (!currprefs.mmu_ec) {
m68k_areg (regs, regno) = mmu_translate(addr, 0, super, data, write, 1);
}
}
#if MMUINSDEBUG > 0
write_log(_T("PLPA%c result: %08x\n"), write ? 'W' : 'R', m68k_areg (regs, regno));
#endif
} else {
op_illg (opcode);
}
}
// fixme : global parameter?
void REGPARAM2 mmu_flush_atc(uaecptr addr, bool super, bool global)
{
int way,type,index;
uaecptr tag = ((super ? 0x80000000 : 0) | (addr >> 1)) & mmu_tagmask;
if (mmu_pagesize_8k)
index=(addr & 0x0001E000)>>13;
else
index=(addr & 0x0000F000)>>12;
for (type=0;type<ATC_TYPE;type++) {
for (way=0;way<ATC_WAYS;way++) {
struct mmu_atc_line *l = &mmu_atc_array[type][index][way];
if (!global && (l->status & MMU_MMUSR_G))
continue;
// if we have this
if (tag == l->tag && l->valid) {
l->valid=false;
}
}
}
flush_shortcut_cache(addr, super);
mmu_flush_cache();
}
void REGPARAM2 mmu_flush_atc_all(bool global)
{
int way,slot,type;
for (type=0;type<ATC_TYPE;type++) {
for (slot=0;slot<ATC_SLOTS;slot++) {
for (way=0;way<ATC_WAYS;way++) {
struct mmu_atc_line *l = &mmu_atc_array[type][slot][way];
if (!global && (l->status&MMU_MMUSR_G))
continue;
l->valid=false;
}
}
}
flush_shortcut_cache(0xffffffff, 0);
mmu_flush_cache();
}
void REGPARAM2 mmu_set_funcs(void)
{
if (currprefs.mmu_model != 68040 && currprefs.mmu_model != 68060)
return;
if (currprefs.cpu_memory_cycle_exact || currprefs.cpu_compatible) {
x_phys_get_iword = get_word_icache040;
x_phys_get_ilong = get_long_icache040;
if (currprefs.cpu_data_cache) {
x_phys_get_byte = get_byte_cache_040;
x_phys_get_word = get_word_cache_040;
x_phys_get_long = get_long_cache_040;
x_phys_put_byte = put_byte_cache_040;
x_phys_put_word = put_word_cache_040;
x_phys_put_long = put_long_cache_040;
} else if (currprefs.cpu_memory_cycle_exact) {
x_phys_get_byte = mem_access_delay_byte_read_c040;
x_phys_get_word = mem_access_delay_word_read_c040;
x_phys_get_long = mem_access_delay_long_read_c040;
x_phys_put_byte = mem_access_delay_byte_write_c040;
x_phys_put_word = mem_access_delay_word_write_c040;
x_phys_put_long = mem_access_delay_long_write_c040;
} else {
x_phys_get_byte = phys_get_byte;
x_phys_get_word = phys_get_word;
x_phys_get_long = phys_get_long;
x_phys_put_byte = phys_put_byte;
x_phys_put_word = phys_put_word;
x_phys_put_long = phys_put_long;
}
} else {
x_phys_get_iword = phys_get_word;
x_phys_get_ilong = phys_get_long;
x_phys_get_byte = phys_get_byte;
x_phys_get_word = phys_get_word;
x_phys_get_long = phys_get_long;
x_phys_put_byte = phys_put_byte;
x_phys_put_word = phys_put_word;
x_phys_put_long = phys_put_long;
}
}
void REGPARAM2 mmu_reset(void)
{
mmu_flush_atc_all(true);
mmu_set_funcs();
}
void REGPARAM2 mmu_set_tc(uae_u16 tc)
{
if (currprefs.mmu_ec)
tc &= ~(0x8000 | 0x4000);
regs.mmu_enabled = (tc & 0x8000) != 0;
mmu_pagesize_8k = (tc & 0x4000) != 0;
mmu_tagmask = mmu_pagesize_8k ? 0xFFFF0000 : 0xFFFF8000;
mmu_pagemask = mmu_pagesize_8k ? 0x00001FFF : 0x00000FFF;
mmu_pagemaski = ~mmu_pagemask;
regs.mmu_page_size = mmu_pagesize_8k ? 8192 : 4096;
mmu_pageshift = mmu_pagesize_8k ? 13 : 12;
mmu_pageshift1m = mmu_pageshift - 1;
cache_default_ins = CACHE_ENABLE_ALL;
cache_default_data = CACHE_ENABLE_ALL;
if (currprefs.mmu_model == 68060) {
int dc = (tc >> 3) & 3;
cache_default_ins = 0;
if (!(dc & 2))
cache_default_ins = CACHE_ENABLE_ALL;
dc = (tc >> 8) & 3;
cache_default_data = 0;
if (!(dc & 2))
cache_default_data = (dc & 1) ? CACHE_ENABLE_COPYBACK | CACHE_ENABLE_ALL : CACHE_ENABLE_ALL;
}
mmu_flush_atc_all(true);
write_log(_T("%d MMU: enabled=%d page8k=%d PC=%08x\n"), currprefs.mmu_model, regs.mmu_enabled, mmu_pagesize_8k, m68k_getpc());
}
void REGPARAM2 mmu_set_super(bool super)
{
mmu_is_super = super ? 0x80000000 : 0;
}
void REGPARAM2 mmu_flush_cache(void)
{
#if MMU_ICACHE
int len = sizeof(mmu_icache_data);
memset(&mmu_icache_data, 0xff, sizeof(mmu_icache_data));
#endif
}
void m68k_do_rte_mmu040 (uaecptr a7)
{
uae_u16 ssr = get_word_mmu040 (a7 + 8 + 4);
if (ssr & MMU_SSW_CT) {
uaecptr src_a7 = a7 + 8 - 8;
uaecptr dst_a7 = a7 + 8 + 52;
put_word_mmu040 (dst_a7 + 0, get_word_mmu040 (src_a7 + 0));
put_long_mmu040 (dst_a7 + 2, get_long_mmu040 (src_a7 + 2));
// skip this word
put_long_mmu040 (dst_a7 + 8, get_long_mmu040 (src_a7 + 8));
}
if (ssr & MMU_SSW_CM) {
mmu040_movem = 1;
mmu040_movem_ea = get_long_mmu040 (a7 + 8);
#if MMUDEBUGMISC > 0
write_log (_T("MMU restarted MOVEM EA=%08X\n"), mmu040_movem_ea);
#endif
}
}
void m68k_do_rte_mmu060 (uaecptr a7)
{
#if 0
mmu060_state = 2;
#endif
}
void flush_mmu040 (uaecptr addr, int n)
{
mmu_flush_cache();
}
void m68k_do_rts_mmu040 (void)
{
uaecptr stack = m68k_areg (regs, 7);
uaecptr newpc = get_long_mmu040 (stack);
m68k_areg (regs, 7) += 4;
m68k_setpc (newpc);
}
void m68k_do_bsr_mmu040 (uaecptr oldpc, uae_s32 offset)
{
uaecptr newstack = m68k_areg (regs, 7) - 4;
put_long_mmu040 (newstack, oldpc);
m68k_areg (regs, 7) -= 4;
m68k_incpci (offset);
}
void flush_mmu060 (uaecptr addr, int n)
{
mmu_flush_cache();
}
void m68k_do_rts_mmu060 (void)
{
uaecptr stack = m68k_areg (regs, 7);
uaecptr newpc = get_long_mmu060 (stack);
m68k_areg (regs, 7) += 4;
m68k_setpc (newpc);
}
void m68k_do_bsr_mmu060 (uaecptr oldpc, uae_s32 offset)
{
uaecptr newstack = m68k_areg (regs, 7) - 4;
put_long_mmu060 (newstack, oldpc);
m68k_areg (regs, 7) -= 4;
m68k_incpci (offset);
}
void uae_mmu_put_lrmw (uaecptr addr, uae_u32 v, int size, int type)
{
locked_rmw_cycle = true;
if (size == sz_byte) {
mmu_put_user_byte(addr, v, regs.s, sz_byte, true);
} else if (size == sz_word) {
if (unlikely(is_unaligned(addr, 2))) {
mmu_put_lrmw_word_unaligned(addr, v);
} else {
mmu_put_user_word(addr, v, regs.s != 0, sz_word, true);
}
} else {
if (unlikely(is_unaligned(addr, 4)))
mmu_put_lrmw_long_unaligned(addr, v);
else
mmu_put_user_long(addr, v, regs.s, sz_long, true);
}
locked_rmw_cycle = false;
}
uae_u32 uae_mmu_get_lrmw (uaecptr addr, int size, int type)
{
uae_u32 v;
locked_rmw_cycle = true;
if (size == sz_byte) {
v = mmu_get_user_byte(addr, regs.s != 0, true, sz_byte, true);
} else if (size == sz_word) {
if (unlikely(is_unaligned(addr, 2))) {
v = mmu_get_lrmw_word_unaligned(addr);
} else {
v = mmu_get_user_word(addr, regs.s != 0, true, sz_word, true);
}
} else {
if (unlikely(is_unaligned(addr, 4)))
v = mmu_get_lrmw_long_unaligned(addr);
else
v = mmu_get_user_long(addr, regs.s != 0, true, sz_long, true);
}
locked_rmw_cycle = false;
return v;
}
uae_u32 REGPARAM2 mmu060_get_rmw_bitfield (uae_u32 src, uae_u32 bdata[2], uae_s32 offset, int width)
{
uae_u32 tmp1, tmp2, res, mask;
offset &= 7;
mask = 0xffffffffu << (32 - width);
switch ((offset + width + 7) >> 3) {
case 1:
tmp1 = get_rmw_byte_mmu060 (src);
res = tmp1 << (24 + offset);
bdata[0] = tmp1 & ~(mask >> (24 + offset));
break;
case 2:
tmp1 = get_rmw_word_mmu060 (src);
res = tmp1 << (16 + offset);
bdata[0] = tmp1 & ~(mask >> (16 + offset));
break;
case 3:
tmp1 = get_rmw_word_mmu060 (src);
tmp2 = get_rmw_byte_mmu060 (src + 2);
res = tmp1 << (16 + offset);
bdata[0] = tmp1 & ~(mask >> (16 + offset));
res |= tmp2 << (8 + offset);
bdata[1] = tmp2 & ~(mask >> (8 + offset));
break;
case 4:
tmp1 = get_rmw_long_mmu060 (src);
res = tmp1 << offset;
bdata[0] = tmp1 & ~(mask >> offset);
break;
case 5:
tmp1 = get_rmw_long_mmu060 (src);
tmp2 = get_rmw_byte_mmu060 (src + 4);
res = tmp1 << offset;
bdata[0] = tmp1 & ~(mask >> offset);
res |= tmp2 >> (8 - offset);
bdata[1] = tmp2 & ~(mask << (8 - offset));
break;
default:
/* Panic? */
write_log (_T("x_get_bitfield() can't happen %d\n"), (offset + width + 7) >> 3);
res = 0;
break;
}
return res;
}
void REGPARAM2 mmu060_put_rmw_bitfield (uae_u32 dst, uae_u32 bdata[2], uae_u32 val, uae_s32 offset, int width)
{
offset = (offset & 7) + width;
switch ((offset + 7) >> 3) {
case 1:
put_rmw_byte_mmu060 (dst, bdata[0] | (val << (8 - offset)));
break;
case 2:
put_rmw_word_mmu060 (dst, bdata[0] | (val << (16 - offset)));
break;
case 3:
put_rmw_word_mmu060 (dst, bdata[0] | (val >> (offset - 16)));
put_rmw_byte_mmu060 (dst + 2, bdata[1] | (val << (24 - offset)));
break;
case 4:
put_rmw_long_mmu060 (dst, bdata[0] | (val << (32 - offset)));
break;
case 5:
put_rmw_long_mmu060 (dst, bdata[0] | (val >> (offset - 32)));
put_rmw_byte_mmu060 (dst + 4, bdata[1] | (val << (40 - offset)));
break;
default:
write_log (_T("x_put_bitfield() can't happen %d\n"), (offset + 7) >> 3);
break;
}
}
#ifndef __cplusplus
jmp_buf __exbuf;
int __exvalue;
#define MAX_TRY_STACK 256
static int s_try_stack_size=0;
static jmp_buf s_try_stack[MAX_TRY_STACK];
jmp_buf* __poptry(void) {
if (s_try_stack_size>0) {
s_try_stack_size--;
if (s_try_stack_size == 0)
return NULL;
memcpy(&__exbuf,&s_try_stack[s_try_stack_size-1],sizeof(jmp_buf));
// fprintf(stderr,"pop jmpbuf=%08x\n",s_try_stack[s_try_stack_size][0]);
return &s_try_stack[s_try_stack_size-1];
}
else {
fprintf(stderr,"try stack underflow...\n");
// return (NULL);
abort();
}
}
void __pushtry(jmp_buf* j) {
if (s_try_stack_size<MAX_TRY_STACK) {
// fprintf(stderr,"push jmpbuf=%08x\n",(*j)[0]);
memcpy(&s_try_stack[s_try_stack_size],j,sizeof(jmp_buf));
s_try_stack_size++;
} else {
fprintf(stderr,"try stack overflow...\n");
abort();
}
}
int __is_catched(void) {return (s_try_stack_size>0); }
#endif
#else
void mmu_op(uae_u32 opcode, uae_u16 /*extra*/)
{
if ((opcode & 0xFE0) == 0x0500) {
/* PFLUSH instruction */
flush_internals();
} else if ((opcode & 0x0FD8) == 0x548) {
/* PTEST instruction */
} else
op_illg(opcode);
}
#endif
/*
vim:ts=4:sw=4:
*/