WinUAE/gfxutil.cpp
2022-12-25 19:59:01 +02:00

512 lines
12 KiB
C++

/*
* UAE - The Un*x Amiga Emulator
*
* Common code needed by all the various graphics systems.
*
* (c) 1996 Bernd Schmidt, Ed Hanway, Samuel Devulder
*/
#include "sysconfig.h"
#include "sysdeps.h"
#include "options.h"
#include "custom.h"
#include "rtgmodes.h"
#include "xwin.h"
#include "gfxfilter.h"
#include "machdep/maccess.h"
#include <math.h>
float getvsyncrate(int monid, float hz, int *mult)
{
struct amigadisplay *ad = &adisplays[monid];
struct apmode *ap = ad->picasso_on ? &currprefs.gfx_apmode[1] : &currprefs.gfx_apmode[0];
if (hz < 0)
return 0;
if (hz > 85) {
*mult = -1;
return hz / 2;
}
if (hz < 35 && hz > 0) {
if (ap->gfx_interlaced)
*mult = 0;
else
*mult = 1;
return hz * 2;
}
*mult = 0;
return hz;
}
#define RED 0
#define GRN 1
#define BLU 2
uae_u32 doMask(uae_u32 p, int bits, int shift)
{
/* scale to 0..255, shift to align msb with mask, and apply mask */
uae_u32 val;
if (flashscreen)
p ^= 0xff;
val = p << 24;
if (!bits)
return 0;
val >>= (32 - bits);
val <<= shift;
return val;
}
int bits_in_mask (unsigned long mask)
{
int n = 0;
while (mask) {
n += mask & 1;
mask >>= 1;
}
return n;
}
int mask_shift (unsigned long mask)
{
int n = 0;
if (!mask)
return 0;
while (!(mask & 1)) {
n++;
mask >>= 1;
}
return n;
}
uae_u32 doMask256 (int p, int bits, int shift)
{
/* p is a value from 0 to 255 (Amiga color value)
* shift to align msb with mask, and apply mask */
uae_u32 val = p;
if (bits == 0)
return 0;
val <<= 24;
val >>= (32 - bits);
val <<= shift;
return val;
}
static uae_u32 doColor (int i, int bits, int shift)
{
int shift2;
if (flashscreen)
i ^= 0xffffffff;
if (bits >= 8)
shift2 = 0;
else
shift2 = 8 - bits;
return (i >> shift2) << shift;
}
static uae_u32 doAlpha (int alpha, int bits, int shift)
{
return (alpha & ((1 << bits) - 1)) << shift;
}
static float video_gamma (float value, float gamma, float bri, float con)
{
float factor;
float ret;
value += bri;
value *= con;
if (value <= 0.0f)
return 0.0f;
factor = (float)pow(255.0f, 1.0f - gamma);
ret = (float)(factor * pow(value, gamma));
if (ret < 0.0f)
ret = 0.0f;
return ret;
}
static uae_u32 gamma[256 * 3][3];
static int lf, hf;
static void video_calc_gammatable(int monid)
{
struct amigadisplay *ad = &adisplays[monid];
struct gfx_filterdata *fd = &currprefs.gf[ad->gf_index];
float bri, con, gam, gams[3];
float max = 255;
if (gfx_hdr) {
bri = 0.0;
con = 1.0;
gam = 0.0;
} else {
bri = ((float)(currprefs.gfx_luminance)) * (128.0f / 1000.0f);
con = ((float)(currprefs.gfx_contrast + 1000)) / 1000.0f;
gam = ((float)(1000 - currprefs.gfx_gamma)) / 1000.0f - 1.0f;
}
gams[0] = gam + ((float)(1000 - currprefs.gfx_gamma_ch[0])) / 1000.0f;
gams[1] = gam + ((float)(1000 - currprefs.gfx_gamma_ch[1])) / 1000.0f;
gams[2] = gam + ((float)(1000 - currprefs.gfx_gamma_ch[2])) / 1000.0f;
lf = 64 * currprefs.gf[ad->gf_index].gfx_filter_blur / 1000;
hf = 256 - lf * 2;
for (int i = 0; i < (256 * 3); i++) {
for (int j = 0; j < 3; j++) {
float val = i - 256.0f;
float v;
if (currprefs.gfx_threebitcolors == 2) {
val *= 2;
} else if (currprefs.gfx_threebitcolors == 3) {
val = (float)((val * 252.0) / 119.0);
} else if (currprefs.gfx_threebitcolors == 1) {
val = (float)((val * 252.0) / 238.0);
}
if (gfx_hdr || (currprefs.gfx_luminance == 0 && currprefs.gfx_contrast == 0 && currprefs.gfx_gamma == 0 &&
currprefs.gfx_gamma_ch[0] == 0 && currprefs.gfx_gamma_ch[1] == 0 && currprefs.gfx_gamma_ch[2] == 0)) {
v = val;
} else {
v = video_gamma(val, gams[j], bri, con);
}
if (v < 0.0)
v = 0.0;
if (v > max)
v = max;
gamma[i][j] = (uae_u32)(v + 0.5);
}
}
}
static uae_u32 limit256(int monid, float v)
{
struct amigadisplay *ad = &adisplays[monid];
if (!gfx_hdr) {
v = v * (float)(currprefs.gf[ad->gf_index].gfx_filter_contrast + 1000) / 1000.0f + currprefs.gf[ad->gf_index].gfx_filter_luminance / 10.0f;
}
if (v < 0)
v = 0;
if (v > 255)
v = 255;
return (uae_u32)v;
}
static uae_s32 limit256rb(int monid, float v)
{
struct amigadisplay *ad = &adisplays[monid];
if (!gfx_hdr) {
v *= (float)(currprefs.gf[ad->gf_index].gfx_filter_saturation + 1000) / 1000.0f;
}
if (v < -128)
v = -128;
if (v > 127)
v = 127;
return (uae_s32)v;
}
static float get_y(int r, int g, int b)
{
return 0.2989f * r + 0.5866f * g + 0.1145f * b;
}
static uae_u32 get_yh(int monid, int r, int g, int b)
{
return limit256(monid, get_y (r, g, b) * hf / 256);
}
static uae_u32 get_yl(int monid, int r, int g, int b)
{
return limit256(monid, get_y (r, g, b) * lf / 256);
}
static uae_s32 get_cb(int monid, int r, int g, int b)
{
return limit256rb(monid, -0.168736f * r - 0.331264f * g + 0.5f * b);
}
static uae_s32 get_cr(int monid, int r, int g, int b)
{
return limit256rb(monid, 0.5f * r - 0.418688f * g - 0.081312f * b);
}
extern uae_s32 tyhrgb[65536];
extern uae_s32 tylrgb[65536];
extern uae_s32 tcbrgb[65536];
extern uae_s32 tcrrgb[65536];
extern uae_u32 redc[3 * 256], grec[3 * 256], bluc[3 * 256];
static uae_u32 lowbits (int v, int shift, int lsize)
{
v >>= shift;
v &= (1 << lsize) - 1;
return v;
}
void alloc_colors_picasso (int rw, int gw, int bw, int rs, int gs, int bs, int rgbfmt, uae_u32 *rgbx16)
{
#ifdef PICASSO96
int byte_swap = 0;
int i;
int red_bits = 0, green_bits, blue_bits;
int red_shift, green_shift, blue_shift;
int bpp = rw + gw + bw;
switch (rgbfmt)
{
case RGBFB_R5G6B5PC:
red_bits = 5;
green_bits = 6;
blue_bits = 5;
red_shift = 11;
green_shift = 5;
blue_shift = 0;
break;
case RGBFB_R5G5B5PC:
red_bits = green_bits = blue_bits = 5;
red_shift = 10;
green_shift = 5;
blue_shift = 0;
break;
case RGBFB_R5G6B5:
red_bits = 5;
green_bits = 6;
blue_bits = 5;
red_shift = 11;
green_shift = 5;
blue_shift = 0;
byte_swap = 1;
break;
case RGBFB_Y4U2V2:
case RGBFB_Y4U1V1:
case RGBFB_R5G5B5:
red_bits = green_bits = blue_bits = 5;
red_shift = 10;
green_shift = 5;
blue_shift = 0;
byte_swap = 1;
break;
case RGBFB_B5G6R5PC:
red_bits = 5;
green_bits = 6;
blue_bits = 5;
red_shift = 0;
green_shift = 5;
blue_shift = 11;
break;
case RGBFB_B5G5R5PC:
red_bits = green_bits = blue_bits = 5;
red_shift = 0;
green_shift = 5;
blue_shift = 10;
break;
default:
red_bits = rw;
green_bits = gw;
blue_bits = bw;
red_shift = rs;
green_shift = gs;
blue_shift = bs;
break;
}
#ifdef WORDS_BIGENDIAN
byte_swap = !byte_swap;
#endif
memset (rgbx16, 0, 65536 * sizeof(uae_u32));
if (red_bits) {
int lrbits = 8 - red_bits;
int lgbits = 8 - green_bits;
int lbbits = 8 - blue_bits;
int lrmask = (1 << red_bits) - 1;
int lgmask = (1 << green_bits) - 1;
int lbmask = (1 << blue_bits) - 1;
for (i = 65535; i >= 0; i--) {
uae_u32 r, g, b, c;
uae_u32 j = byte_swap ? do_byteswap_16(i) : i;
r = (((j >> red_shift) & lrmask) << lrbits) | lowbits (j, red_shift, lrbits);
g = (((j >> green_shift) & lgmask) << lgbits) | lowbits (j, green_shift, lgbits);
b = (((j >> blue_shift) & lbmask) << lbbits) | lowbits (j, blue_shift, lbbits);
c = doMask(r, rw, rs) | doMask(g, gw, gs) | doMask(b, bw, bs);
if (bpp <= 16)
c *= 0x00010001;
rgbx16[i] = c;
}
}
#endif
}
void alloc_colors_rgb (int rw, int gw, int bw, int rs, int gs, int bs, int aw, int as, int alpha, int byte_swap,
uae_u32 *rc, uae_u32 *gc, uae_u32 *bc)
{
int bpp = rw + gw + bw + aw;
int i;
for(i = 0; i < 256; i++) {
int j;
if (!gfx_hdr && currprefs.gfx_blackerthanblack) {
j = i * 15 / 16 + 15;
} else {
j = i;
}
j += 256;
rc[i] = doColor(gamma[j][0], rw, rs) | doAlpha(alpha, aw, as);
gc[i] = doColor(gamma[j][1], gw, gs) | doAlpha(alpha, aw, as);
bc[i] = doColor(gamma[j][2], bw, bs) | doAlpha(alpha, aw, as);
if (byte_swap) {
if (bpp <= 16) {
rc[i] = do_byteswap_16(rc[i]);
gc[i] = do_byteswap_16(gc[i]);
bc[i] = do_byteswap_16 (bc[i]);
} else {
rc[i] = do_byteswap_32(rc[i]);
gc[i] = do_byteswap_32(gc[i]);
bc[i] = do_byteswap_32(bc[i]);
}
}
if (bpp <= 16) {
/* Fill upper 16 bits of each colour value with
* a copy of the colour. */
rc[i] = rc[i] * 0x00010001;
gc[i] = gc[i] * 0x00010001;
bc[i] = bc[i] * 0x00010001;
}
}
}
void alloc_colors64k(int monid, int rw, int gw, int bw, int rs, int gs, int bs, int aw, int as, int alpha, int byte_swap, bool yuv)
{
int bpp = rw + gw + bw + aw;
int i, j;
video_calc_gammatable(monid);
j = 256;
for (i = 0; i < 4096; i++) {
int r = ((i >> 8) << 4) | (i >> 8);
int g = (((i >> 4) & 0xf) << 4) | ((i >> 4) & 0x0f);
int b = ((i & 0xf) << 4) | (i & 0x0f);
if (!gfx_hdr && currprefs.gfx_blackerthanblack) {
r = (r * (255 - 8) / 255) + 8;
g = (g * (255 - 8) / 255) + 8;
b = (b * (255 - 8) / 255) + 8;
}
r = gamma[r + j][0];
g = gamma[g + j][1];
b = gamma[b + j][2];
xcolors[i] = doMask(r, rw, rs) | doMask(g, gw, gs) | doMask(b, bw, bs) | doAlpha(alpha, aw, as);
if (byte_swap) {
if (bpp <= 16) {
xcolors[i] = do_byteswap_16(xcolors[i]);
} else {
xcolors[i] = do_byteswap_32(xcolors[i]);
}
}
if (bpp <= 16) {
/* Fill upper 16 bits of each colour value
* with a copy of the colour. */
xcolors[i] |= xcolors[i] * 0x00010001;
}
}
fullblack = 0;
if (gfx_hdr) {
fullblack = doAlpha(1, aw, as);
}
#if defined(AGA) || defined(GFXFILTER)
alloc_colors_rgb (rw, gw, bw, rs, gs, bs, aw, as, alpha, byte_swap, xredcolors, xgreencolors, xbluecolors);
/* copy original color table */
for (i = 0; i < 256; i++) {
redc[0 * 256 + i] = xredcolors[0];
grec[0 * 256 + i] = xgreencolors[0];
bluc[0 * 256 + i] = xbluecolors[0];
redc[1 * 256 + i] = xredcolors[i];
grec[1 * 256 + i] = xgreencolors[i];
bluc[1 * 256 + i] = xbluecolors[i];
redc[2 * 256 + i] = xredcolors[255];
grec[2 * 256 + i] = xgreencolors[255];
bluc[2 * 256 + i] = xbluecolors[255];
}
#ifdef GFXFILTER
if (yuv) {
/* create internal 5:6:5 color tables */
for (i = 0; i < 256; i++) {
j = i + 256;
xredcolors[i] = doColor (gamma[j][0], 5, 11);
xgreencolors[i] = doColor (gamma[j][1], 6, 5);
xbluecolors[i] = doColor (gamma[j][2], 5, 0);
if (bpp <= 16) {
/* Fill upper 16 bits of each colour value with
* a copy of the colour. */
xredcolors [i] = xredcolors [i] * 0x00010001;
xgreencolors[i] = xgreencolors[i] * 0x00010001;
xbluecolors [i] = xbluecolors [i] * 0x00010001;
}
}
for (i = 0; i < 4096; i++) {
int r = ((i >> 8) << 4) | (i >> 8);
int g = (((i >> 4) & 0xf) << 4) | ((i >> 4) & 0x0f);
int b = ((i & 0xf) << 4) | (i & 0x0f);
r = gamma[r + 256][0];
g = gamma[g + 256][1];
b = gamma[b + 256][2];
if (currprefs.gfx_blackerthanblack) {
r = (r * (255 - 8) / 255) + 8;
g = (g * (255 - 8) / 255) + 8;
b = (b * (255 - 8) / 255) + 8;
}
xcolors[i] = doMask(r, 5, 11) | doMask(g, 6, 5) | doMask(b, 5, 0);
if (byte_swap) {
if (bpp <= 16)
xcolors[i] = do_byteswap_16(xcolors[i]);
else
xcolors[i] = do_byteswap_32(xcolors[i]);
}
if (bpp <= 16) {
/* Fill upper 16 bits of each colour value
* with a copy of the colour. */
xcolors[i] |= xcolors[i] * 0x00010001;
}
}
/* create RGB 5:6:5 -> YUV tables */
for (i = 0; i < 65536; i++) {
uae_u32 r, g, b;
r = (((i >> 11) & 31) << 3) | lowbits (i, 11, 3);
r = gamma[r + 256][0];
g = (((i >> 5) & 63) << 2) | lowbits (i, 5, 2);
g = gamma[g + 256][1];
b = (((i >> 0) & 31) << 3) | lowbits (i, 0, 3);
b = gamma[b + 256][2];
tyhrgb[i] = get_yh(monid, r, g, b) * 256 * 256;
tylrgb[i] = get_yl(monid, r, g, b) * 256 * 256;
tcbrgb[i] = ((uae_s8)get_cb(monid, r, g, b)) * 256;
tcrrgb[i] = ((uae_s8)get_cr(monid, r, g, b)) * 256;
}
}
#endif
#endif
xredcolor_b = rw;
xgreencolor_b = gw;
xbluecolor_b = bw;
xredcolor_s = rs;
xgreencolor_s = gs;
xbluecolor_s = bs;
xredcolor_m = (1 << rw) - 1;
xgreencolor_m = (1 << gw) - 1;
xbluecolor_m = (1 << bw) - 1;
}