WinUAE/pcem/x86seg.cpp
2021-08-26 20:42:31 +03:00

3269 lines
138 KiB
C++

//#if 0
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include "ibm.h"
#include "mem.h"
#include "x86.h"
#include "x86_flags.h"
#include "386_common.h"
#include "cpu.h"
#include "config.h"
#include "paths.h"
#include "i440bx.h"
/*Controls whether the accessed bit in a descriptor is set when CS is loaded.*/
#define CS_ACCESSED
/*Controls whether the accessed bit in a descriptor is set when a data or stack
selector is loaded.*/
#define SEL_ACCESSED
int stimes = 0;
int dtimes = 0;
int btimes = 0;
uint32_t abrt_error;
int cgate16,cgate32;
#define breaknullsegs 0
int intgatesize;
void taskswitch286(uint16_t seg, uint16_t *segdat, int is32);
void taskswitch386(uint16_t seg, uint16_t *segdat);
/*NOT PRESENT is INT 0B
GPF is INT 0D*/
#ifndef UAE
FILE *pclogf;
void x86abort(const char *format, ...)
{
char buf[256];
// return;
if (!pclogf)
{
strcpy(buf, logs_path);
put_backslash(buf);
strcat(buf, "pcem.log");
pclogf=fopen(buf, "wt");
}
//return;
va_list ap;
va_start(ap, format);
vsprintf(buf, format, ap);
va_end(ap);
fputs(buf,pclogf);
fflush(pclogf);
dumpregs();
exit(-1);
}
#else
void x86abort(const char *format, ...)
{
char buf[256];
va_list ap;
va_start(ap, format);
vsprintf(buf, format, ap);
va_end(ap);
fatal(buf);
}
#endif
static void seg_reset(x86seg *s)
{
s->access = (0 << 5) | 2;
s->access2 = 0;
s->limit = 0xFFFF;
s->limit_low = 0;
s->limit_high = 0xffff;
if (s == &cpu_state.seg_cs)
{
// TODO - When the PC is reset, initialization of the CS descriptor must be like the annotated line below.
//s->base = AT ? (cpu_16bitbus ? 0xFF0000 : 0xFFFF0000) : 0xFFFF0;
s->base = AT ? 0xF0000 : 0xFFFF0;
s->seg = AT ? 0xF000 : 0xFFFF;
}
else
{
s->base = 0;
s->seg = 0;
}
}
void x86seg_reset()
{
seg_reset(&cpu_state.seg_cs);
seg_reset(&cpu_state.seg_ds);
seg_reset(&cpu_state.seg_es);
seg_reset(&cpu_state.seg_fs);
seg_reset(&cpu_state.seg_gs);
seg_reset(&cpu_state.seg_ss);
}
void x86_doabrt(int x86_abrt)
{
// ingpf = 1;
cpu_state.pc = cpu_state.oldpc;
cpu_state.seg_cs.access = oldcpl << 5;
// pclog("x86_doabrt - %02X %08X %04X:%08X %i\n", x86_abrt, abrt_error, CS, pc, ins);
/* if (CS == 0x3433 && pc == 0x000006B0)
{
pclog("Quit it\n");
dumpregs();
exit(-1);
}*/
// pclog("GPF! - error %04X %04X(%08X):%08X %02X %02X %i %04X %i %i\n",error,CS,cs,pc,opcode,opcode2,ins,flags&I_FLAG,IOPL, dtimes);
if (msw & 1)
pmodeint(x86_abrt, 0);
else
{
uint32_t addr = (x86_abrt << 2) + idt.base;
if (stack32)
{
writememw(ss,ESP-2,cpu_state.flags);
writememw(ss,ESP-4,CS);
writememw(ss,ESP-6,cpu_state.pc);
ESP-=6;
}
else
{
writememw(ss,((SP-2)&0xFFFF),cpu_state.flags);
writememw(ss,((SP-4)&0xFFFF),CS);
writememw(ss,((SP-6)&0xFFFF),cpu_state.pc);
SP-=6;
}
cpu_state.flags &= ~I_FLAG;
cpu_state.flags &= ~T_FLAG;
cpu_state.pc=readmemw(0,addr);
loadcs(readmemw(0,addr+2));
return;
}
if (cpu_state.abrt || x86_was_reset) return;
if (intgatesize == 16)
{
if (stack32)
{
writememw(ss, ESP-2, abrt_error);
ESP-=2;
}
else
{
writememw(ss, ((SP-2)&0xFFFF), abrt_error);
SP-=2;
}
}
else
{
if (stack32)
{
writememl(ss, ESP-4, abrt_error);
ESP-=4;
}
else
{
writememl(ss, ((SP-4)&0xFFFF), abrt_error);
SP-=4;
}
}
}
void x86gpf(const char *s, uint16_t error)
{
// pclog("GPF %04X %04x(%08x):%08x\n", error, CS,cs,cpu_state.pc);
cpu_state.abrt = ABRT_GPF;
abrt_error = error;
}
void x86gpf_expected(const char *s, uint16_t error)
{
// pclog("GPF_v86 %04X %04x(%08x):%08x\n", error, CS,cs,cpu_state.pc);
cpu_state.abrt = ABRT_GPF | ABRT_EXPECTED;
abrt_error = error;
}
void x86ss(char *s, uint16_t error)
{
// pclog("SS %04X\n", error);
cpu_state.abrt = ABRT_SS;
abrt_error = error;
}
void x86ts(const char *s, uint16_t error)
{
// pclog("TS %04X\n", error);
cpu_state.abrt = ABRT_TS;
abrt_error = error;
}
void x86np(const char *s, uint16_t error)
{
// pclog("NP %04X : %s\n", error, s);
cpu_state.abrt = ABRT_NP;
abrt_error = error;
}
static void set_stack32(int s)
{
stack32 = s;
if (stack32)
cpu_cur_status |= CPU_STATUS_STACK32;
else
cpu_cur_status &= ~CPU_STATUS_STACK32;
}
static void set_use32(int u)
{
if (u)
{
use32 = 0x300;
cpu_cur_status |= CPU_STATUS_USE32;
}
else
{
use32 = 0;
cpu_cur_status &= ~CPU_STATUS_USE32;
}
}
static void do_seg_load(x86seg *s, uint16_t *segdat)
{
s->limit = segdat[0] | ((segdat[3] & 0xF) << 16);
s->limit_raw = s->limit;
if (segdat[3] & 0x80)
s->limit = (s->limit << 12) | 0xFFF;
s->base = segdat[1] | ((segdat[2] & 0xFF) << 16);
if (is386)
s->base |= ((segdat[3] >> 8) << 24);
s->access = segdat[2] >> 8;
s->access2 = segdat[3] & 0xf0;
if ((segdat[2] & 0x1800) != 0x1000 || !(segdat[2] & (1 << 10))) /*expand-down*/
{
s->limit_high = s->limit;
s->limit_low = 0;
}
else
{
s->limit_high = (segdat[3] & 0x40) ? 0xffffffff : 0xffff;
s->limit_low = s->limit + 1;
}
// if (output) pclog("SEG : base=%08x limit=%08x low=%08x high=%08x\n", s->base, s->limit, s->limit_low, s->limit_high);
if (s == &cpu_state.seg_ds)
{
if (s->base == 0 && s->limit_low == 0 && s->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATDS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
}
if (s == &cpu_state.seg_ss)
{
if (s->base == 0 && s->limit_low == 0 && s->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATSS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATSS;
}
}
static void do_seg_v86_init(x86seg *s)
{
s->access = (3 << 5) | 2;
s->access2 = 0;
s->limit = 0xffff;
s->limit_low = 0;
s->limit_high = 0xffff;
}
static void check_seg_valid(x86seg *s)
{
int dpl = (s->access >> 5) & 3;
int valid = 1;
if (s->seg & 4)
{
if ((s->seg & ~7) >= ldt.limit)
{
// pclog("Bigger than LDT limit %04X %04X %02X %02X %02X\n", s->seg, ldt.limit, opcode, opcode2, rmdat);
valid = 0;
}
}
else
{
if ((s->seg & ~7) >= gdt.limit)
{
// pclog("Bigger than GDT limit %04X %04X\n", s->seg, gdt.limit);
valid = 0;
}
}
switch (s->access & 0x1f)
{
case 0x10: case 0x11: case 0x12: case 0x13: /*Data segments*/
case 0x14: case 0x15: case 0x16: case 0x17:
case 0x1A: case 0x1B: /*Readable non-conforming code*/
if ((s->seg & 3) > dpl || (CPL) > dpl)
{
// pclog("Data seg fail - %04X:%08X %04X %i\n", CS, pc, s->seg, dpl);
valid = 0;
break;
}
break;
case 0x1E: case 0x1F: /*Readable conforming code*/
break;
default:
valid = 0;
break;
}
if (!valid)
loadseg(0, s);
}
int loadseg(uint16_t seg, x86seg *s)
{
uint16_t segdat[4];
uint32_t addr;
int dpl;
if (msw&1 && !(cpu_state.eflags&VM_FLAG))
{
// intcount++;
if (!(seg&~3))
{
if (s==&cpu_state.seg_ss)
{
pclog("SS selector = NULL!\n");
x86ss(NULL,0);
return 1;
// dumpregs();
// exit(-1);
}
// if (s->base!=-1) pclog("NEW! ");
s->seg=0;
s->access = 0;
s->base=-1;
if (s == &cpu_state.seg_ds)
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
// pclog("NULL selector %s%s%s%s %04X(%06X):%06X\n",(s==&_ds)?"DS":"",(s==&_es)?"ES":"",(s==&_fs)?"FS":"",(s==&_gs)?"GS":"",CS,cs,pc);
return 0;
}
// if (s==&_ss) pclog("Load SS %04X\n",seg);
// pclog("Protected mode seg load!\n");
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X %02X\n",seg,ldt.limit, 0/*rmdat*/);
// dumppic();
// dumpregs();
// exit(-1);
x86gpf(NULL,seg&~3);
return 1;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X 1\n",seg,gdt.limit);
// dumpregs();
// exit(-1);
x86gpf(NULL,seg&~3);
return 1;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return 1;
dpl=(segdat[2]>>13)&3;
if (s==&cpu_state.seg_ss)
{
if (!(seg&~3))
{
pclog("Load SS null selector\n");
x86gpf(NULL,seg&~3);
return 1;
}
if ((seg&3)!=CPL || dpl!=CPL)
{
pclog("Invalid SS permiss\n");
x86gpf(NULL,seg&~3);
// x86abort("Invalid SS permiss for %04X!\n",seg&0xFFFC);
return 1;
}
switch ((segdat[2]>>8)&0x1F)
{
case 0x12: case 0x13: case 0x16: case 0x17: /*r/w*/
break;
default:
pclog("Invalid SS type\n");
x86gpf(NULL,seg&~3);
// x86abort("Invalid SS segment type for %04X!\n",seg&0xFFFC);
return 1;
}
if (!(segdat[2]&0x8000))
{
pclog("Load SS not present!\n");
x86ss(NULL,seg&~3);
return 1;
}
set_stack32((segdat[3] & 0x40) ? 1 : 0);
// pclog("Load SS %04x %04x %04x %04x\n", segdat[0], segdat[1], segdat[2], segdat[3]);
}
else if (s!=&cpu_state.seg_cs)
{
if (output) pclog("Seg data %04X %04X %04X %04X\n", segdat[0], segdat[1], segdat[2], segdat[3]);
if (output) pclog("Seg type %03X\n",segdat[2]&0x1F00);
switch ((segdat[2]>>8)&0x1F)
{
case 0x10: case 0x11: case 0x12: case 0x13: /*Data segments*/
case 0x14: case 0x15: case 0x16: case 0x17:
case 0x1A: case 0x1B: /*Readable non-conforming code*/
// pclog("Load seg %04X %i %i %04X:%08X\n",seg,dpl,CS&3,CS,pc);
if ((seg&3)>dpl || (CPL)>dpl)
{
pclog("Data seg fail - %04X:%08X %04X %i %04X\n",CS,cpu_state.pc,seg,dpl,segdat[2]);
x86gpf(NULL,seg&~3);
// x86abort("Data segment load - level too low!\n",seg&0xFFFC);
return 1;
}
break;
case 0x1E: case 0x1F: /*Readable conforming code*/
break;
default:
pclog("Invalid segment type for %04X! %04X\n",seg&0xFFFC,segdat[2]);
x86gpf(NULL,seg&~3);
return 1;
}
}
if (!(segdat[2] & 0x8000))
{
x86np("Load data seg not present", seg & 0xfffc);
return 1;
}
s->seg = seg;
do_seg_load(s, segdat);
#ifndef CS_ACCESSED
if (s != &_cs)
{
#endif
#ifdef SEL_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
#ifndef CS_ACCESSED
}
#endif
s->checked = 0;
if (s == &cpu_state.seg_ds)
codegen_flat_ds = 0;
if (s == &cpu_state.seg_ss)
codegen_flat_ss = 0;
}
else
{
s->access = (3 << 5) | 2;
s->access2 = 0;
s->base = seg << 4;
s->seg = seg;
s->checked = 1;
if (s == &cpu_state.seg_ds)
codegen_flat_ds = 0;
if (s == &cpu_state.seg_ss)
codegen_flat_ss = 0;
if (s == &cpu_state.seg_ss && (cpu_state.eflags & VM_FLAG))
set_stack32(0);
}
if (s == &cpu_state.seg_ds)
{
if (s->base == 0 && s->limit_low == 0 && s->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATDS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
}
if (s == &cpu_state.seg_ss)
{
if (s->base == 0 && s->limit_low == 0 && s->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATSS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATSS;
}
return cpu_state.abrt;
}
#define DPL ((segdat[2]>>13)&3)
#define DPL2 ((segdat2[2]>>13)&3)
#define DPL3 ((segdat3[2]>>13)&3)
void loadcs(uint16_t seg)
{
uint16_t segdat[4];
uint32_t addr;
if (output) pclog("Load CS %04X\n",seg);
if (msw&1 && !(cpu_state.eflags&VM_FLAG))
{
// intcount++;
// flushmmucache();
// pclog("Load CS %04X\n",seg);
if (!(seg&~3))
{
pclog("Trying to load CS with NULL selector! lcs\n");
// dumpregs();
// exit(-1);
x86gpf(NULL,0);
return;
}
// pclog("Protected mode CS load! %04X\n",seg);
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X CS\n",seg,ldt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CS\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (optype==JMP) pclog("Code seg - %04X - %04X %04X %04X %04X\n",seg,segdat[0],segdat[1],segdat[2],segdat[3]);
// if (!(segdat[2]&0x8000)) x86abort("Code segment not present!\n");
// if (output) pclog("Segdat2 %04X\n",segdat[2]);
if (segdat[2]&0x1000) /*Normal code segment*/
{
if (!(segdat[2]&0x400)) /*Not conforming*/
{
if ((seg&3)>CPL)
{
x86gpf(NULL,seg&~3);
pclog("loadcs RPL > CPL %04X %04X %i\n",segdat[2],seg,CPL);
return;
}
if (CPL != DPL)
{
x86gpf(NULL,seg&~3);
return;
}
}
if (CPL < DPL)
{
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
x86np("Load CS not present", seg & 0xfffc);
return;
}
set_use32(segdat[3] & 0x40);
CS=(seg&~3)|CPL;
do_seg_load(&cpu_state.seg_cs, segdat);
use32=(segdat[3]&0x40)?0x300:0;
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
// if (output) pclog("Load CS %08X\n",_cs.base);
// CS=(CS&0xFFFC)|((_cs.access>>5)&3);
}
else /*System segment*/
{
if (!(segdat[2]&0x8000))
{
x86np("Load CS system seg not present\n", seg & 0xfffc);
return;
}
switch (segdat[2]&0xF00)
{
default:
pclog("Bad CS %02X %i special descriptor %03X %04X\n",0/*rmdat*/,optype,segdat[2]&0xF00,seg);
x86gpf(NULL,seg&~3);
return;
}
}
// pclog("CS = %04X base=%06X limit=%04X access=%02X %04X\n",CS,cs,_cs.limit,_cs.access,addr);
// dumpregs();
// exit(-1);
}
else
{
cpu_state.seg_cs.base=seg<<4;
cpu_state.seg_cs.limit=0xFFFF;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffff;
CS=seg;
if (cpu_state.eflags&VM_FLAG) cpu_state.seg_cs.access=(3<<5) | 2;
else cpu_state.seg_cs.access=(0<<5) | 2;
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
}
}
void loadcsjmp(uint16_t seg, uint32_t old_pc)
{
uint16_t segdat[4];
uint32_t addr;
uint16_t type,seg2;
uint32_t newpc;
// pclog("Load CS JMP %04X\n",seg);
if (msw&1 && !(cpu_state.eflags&VM_FLAG))
{
if (!(seg&~3))
{
pclog("Trying to load CS with NULL selector! lcsjmp\n");
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X CS\n",seg,ldt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CS\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (output) pclog("%04X %04X %04X %04X\n",segdat[0],segdat[1],segdat[2],segdat[3]);
if (segdat[2]&0x1000) /*Normal code segment*/
{
// pclog("Normal CS\n");
if (!(segdat[2]&0x400)) /*Not conforming*/
{
if ((seg&3)>CPL)
{
x86gpf(NULL,seg&~3);
return;
}
if (CPL != DPL)
{
x86gpf(NULL,seg&~3);
return;
}
}
if (CPL < DPL)
{
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
x86np("Load CS JMP not present\n", seg & 0xfffc);
return;
}
set_use32(segdat[3]&0x40);
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
CS = (seg & ~3) | CPL;
segdat[2] = (segdat[2] & ~(3 << (5+8))) | (CPL << (5+8));
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
/* if (segdat[3]&0x40)
{
use32=0x300;
cpu_cur_status |= CPU_STATUS_USE32;
}
else
{
use32=0;
cpu_cur_status &= ~CPU_STATUS_USE32;
}*/
cycles -= timing_jmp_pm;
}
else /*System segment*/
{
// pclog("System CS\n");
if (!(segdat[2]&0x8000))
{
x86np("Load CS JMP system selector not present\n", seg & 0xfffc);
return;
}
type=segdat[2]&0xF00;
newpc=segdat[0];
if (type&0x800) newpc|=segdat[3]<<16;
switch (type)
{
case 0x400: /*Call gate*/
case 0xC00:
// pclog("Call gate\n");
cgate32=(type&0x800);
cgate16=!cgate32;
cpu_state.oldpc = cpu_state.pc;
if ((DPL < CPL) || (DPL < (seg&3)))
{
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
x86np("Load CS JMP call gate not present\n", seg & 0xfffc);
return;
}
seg2=segdat[1];
if (!(seg2&~3))
{
pclog("Trying to load CS with NULL selector! lcsjmpcg\n");
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
addr=seg2&~7;
if (seg2&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X CSJ\n",seg2,gdt.limit);
x86gpf(NULL,seg2&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CSJ\n",seg2,gdt.limit);
x86gpf(NULL,seg2&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (DPL > CPL)
{
x86gpf(NULL,seg2&~3);
return;
}
if (!(segdat[2]&0x8000))
{
x86np("Load CS JMP from call gate not present\n", seg2 & 0xfffc);
return;
}
switch (segdat[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming code*/
if (DPL > CPL)
{
pclog("Call gate DPL > CPL");
x86gpf(NULL,seg2&~3);
return;
}
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
CS=seg2;
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3]&0x40);
cpu_state.pc=newpc;
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
break;
default:
pclog("JMP Call gate bad segment type\n");
x86gpf(NULL,seg2&~3);
return;
}
cycles -= timing_jmp_pm_gate;
break;
case 0x100: /*286 Task gate*/
case 0x900: /*386 Task gate*/
// pclog("Task gate\n");
cpu_state.pc = old_pc;
optype=JMP;
cpl_override=1;
taskswitch286(seg,segdat,segdat[2]&0x800);
cpu_state.flags &= ~NT_FLAG;
cpl_override=0;
// case 0xB00: /*386 Busy task gate*/
// if (optype==JMP) pclog("Task switch!\n");
// taskswitch386(seg,segdat);
return;
default:
pclog("Bad JMP CS %02X %i special descriptor %03X %04X\n",0/*rmdat*/,optype,segdat[2]&0xF00,seg);
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
}
// pclog("CS = %04X base=%06X limit=%04X access=%02X %04X\n",CS,cs,_cs.limit,_cs.access,addr);
// dumpregs();
// exit(-1);
}
else
{
cpu_state.seg_cs.base=seg<<4;
cpu_state.seg_cs.limit=0xFFFF;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffff;
CS=seg;
if (cpu_state.eflags&VM_FLAG) cpu_state.seg_cs.access=(3<<5) | 2;
else cpu_state.seg_cs.access=(0<<5) | 2;
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
cycles -= timing_jmp_rm;
}
}
void PUSHW(uint16_t v)
{
// if (output==3) pclog("PUSHW %04X to %08X\n",v,ESP-4);
if (stack32)
{
writememw(ss,ESP-2,v);
if (cpu_state.abrt) return;
ESP-=2;
}
else
{
// pclog("Write %04X to %08X\n", v, ss+((SP-2)&0xFFFF));
writememw(ss,((SP-2)&0xFFFF),v);
if (cpu_state.abrt) return;
SP-=2;
}
}
void PUSHL(uint32_t v)
{
// if (output==3) pclog("PUSHL %08X to %08X\n",v,ESP-4);
if (stack32)
{
writememl(ss,ESP-4,v);
if (cpu_state.abrt) return;
ESP-=4;
}
else
{
writememl(ss,((SP-4)&0xFFFF),v);
if (cpu_state.abrt) return;
SP-=4;
}
}
uint16_t POPW()
{
uint16_t tempw;
if (stack32)
{
tempw=readmemw(ss,ESP);
if (cpu_state.abrt) return 0;
ESP+=2;
}
else
{
tempw=readmemw(ss,SP);
if (cpu_state.abrt) return 0;
SP+=2;
}
return tempw;
}
uint32_t POPL()
{
uint32_t templ;
if (stack32)
{
templ=readmeml(ss,ESP);
if (cpu_state.abrt) return 0;
ESP+=4;
}
else
{
templ=readmeml(ss,SP);
if (cpu_state.abrt) return 0;
SP+=4;
}
return templ;
}
void loadcscall(uint16_t seg, uint32_t old_pc)
{
uint16_t seg2;
uint16_t segdat[4],segdat2[4],newss;
uint32_t addr,oldssbase=ss, oaddr;
uint32_t newpc;
int count;
uint32_t oldss,oldsp,newsp,oldsp2;
int type;
uint16_t tempw;
int csout = output;
if (msw&1 && !(cpu_state.eflags&VM_FLAG))
{
//flushmmucache();
if (csout) pclog("Protected mode CS load! %04X\n",seg);
if (!(seg&~3))
{
pclog("Trying to load CS with NULL selector! lcscall\n");
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X CSC\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CSC\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
type=segdat[2]&0xF00;
newpc=segdat[0];
if (type&0x800) newpc|=segdat[3]<<16;
if (csout) pclog("Code seg call - %04X - %04X %04X %04X\n",seg,segdat[0],segdat[1],segdat[2]);
if (segdat[2]&0x1000)
{
if (!(segdat[2]&0x400)) /*Not conforming*/
{
if ((seg&3)>CPL)
{
if (csout) pclog("Not conforming, RPL > CPL\n");
x86gpf(NULL,seg&~3);
return;
}
if (CPL != DPL)
{
if (csout) pclog("Not conforming, CPL != DPL (%i %i)\n",CPL,DPL);
x86gpf(NULL,seg&~3);
return;
}
}
if (CPL < DPL)
{
if (csout) pclog("CPL < DPL\n");
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
if (csout) pclog("Not present\n");
x86np("Load CS call not present", seg & 0xfffc);
return;
}
set_use32(segdat[3]&0x40);
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
/*Conforming segments don't change CPL, so preserve existing CPL*/
if (segdat[2]&0x400)
{
seg = (seg & ~3) | CPL;
segdat[2] = (segdat[2] & ~(3 << (5+8))) | (CPL << (5+8));
}
else /*On non-conforming segments, set RPL = CPL*/
seg = (seg & ~3) | CPL;
CS=seg;
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
/* if (segdat[3]&0x40)
{
use32=0x300;
cpu_cur_status |= CPU_STATUS_USE32;
}
else
{
use32=0;
cpu_cur_status &= ~CPU_STATUS_USE32;
}*/
if (csout) pclog("Complete\n");
cycles -= timing_call_pm;
}
else
{
type=segdat[2]&0xF00;
if (csout) pclog("Type %03X\n",type);
switch (type)
{
case 0x400: /*Call gate*/
case 0xC00: /*386 Call gate*/
if (output) pclog("Callgate %08X\n", cpu_state.pc);
cgate32=(type&0x800);
cgate16=!cgate32;
count=segdat[2]&31;
if ((DPL < CPL) || (DPL < (seg&3)))
{
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
if (output) pclog("Call gate not present %04X\n",seg);
x86np("Call gate not present\n", seg & 0xfffc);
return;
}
seg2=segdat[1];
if (output) pclog("New address : %04X:%08X\n", seg2, newpc);
if (!(seg2&~3))
{
pclog("Trying to load CS with NULL selector! lcscallcg\n");
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
addr=seg2&~7;
if (seg2&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X CSC\n",seg2,gdt.limit);
x86gpf(NULL,seg2&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CSC\n",seg2,gdt.limit);
x86gpf(NULL,seg2&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (output) pclog("Code seg2 call - %04X - %04X %04X %04X\n",seg2,segdat[0],segdat[1],segdat[2]);
if (DPL > CPL)
{
x86gpf(NULL,seg2&~3);
return;
}
if (!(segdat[2]&0x8000))
{
if (output) pclog("Call gate CS not present %04X\n",seg2);
x86np("Call gate CS not present", seg2 & 0xfffc);
return;
}
switch (segdat[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming code*/
if (DPL < CPL)
{
uint16_t oldcs = CS;
oaddr = addr;
/*Load new stack*/
oldss=SS;
oldsp=oldsp2=ESP;
cpl_override=1;
if (tr.access&8)
{
addr = 4 + tr.base + (DPL * 8);
newss=readmemw(0,addr+4);
newsp=readmeml(0,addr);
}
else
{
addr = 2 + tr.base + (DPL * 4);
newss=readmemw(0,addr+2);
newsp=readmemw(0,addr);
}
cpl_override=0;
if (cpu_state.abrt) return;
if (output) pclog("New stack %04X:%08X\n",newss,newsp);
if (!(newss&~3))
{
pclog("Call gate loading null SS\n");
x86ts(NULL,newss&~3);
return;
}
addr=newss&~7;
if (newss&4)
{
if (addr>=ldt.limit)
{
x86abort("Bigger than LDT limit %04X %08X %04X CSC SS\n",newss,addr,ldt.limit);
x86ts(NULL,newss&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
x86abort("Bigger than GDT limit %04X %04X CSC\n",newss,gdt.limit);
x86ts(NULL,newss&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
if (output) pclog("Read stack seg\n");
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (output) pclog("Read stack seg done!\n");
if (((newss & 3) != DPL) || (DPL2 != DPL))
{
pclog("Call gate loading SS with wrong permissions %04X %04X %i %i %04X %04X\n", newss, seg2, DPL, DPL2, segdat[2], segdat2[2]);
// dumpregs();
// exit(-1);
x86ts(NULL,newss&~3);
return;
}
if ((segdat2[2]&0x1A00)!=0x1200)
{
pclog("Call gate loading SS wrong type\n");
x86ts(NULL,newss&~3);
return;
}
if (!(segdat2[2]&0x8000))
{
pclog("Call gate loading SS not present\n");
x86ss("Call gate loading SS not present\n", newss & 0xfffc);
return;
}
if (!stack32) oldsp &= 0xFFFF;
SS=newss;
set_stack32((segdat2[3] & 0x40) ? 1 : 0);
if (stack32) ESP=newsp;
else SP=newsp;
do_seg_load(&cpu_state.seg_ss, segdat2);
if (output) pclog("Set access 1\n");
#ifdef SEL_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat2[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
CS=seg2;
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3]&0x40);
cpu_state.pc=newpc;
if (output) pclog("Set access 2\n");
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, oaddr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
if (output) pclog("Type %04X\n",type);
if (type==0xC00)
{
PUSHL(oldss);
PUSHL(oldsp2);
if (cpu_state.abrt)
{
pclog("ABRT PUSHL\n");
SS = oldss;
ESP = oldsp2;
CS = oldcs;
return;
}
// if (output) pclog("Stack now %04X:%08X\n",SS,ESP);
if (count)
{
while (count)
{
count--;
PUSHL(readmeml(oldssbase,oldsp+(count*4)));
if (cpu_state.abrt)
{
pclog("ABRT COPYL\n");
SS = oldss;
ESP = oldsp2;
CS = oldcs;
return;
}
}
}
// x86abort("Call gate with count %i\n",count);
}
else
{
if (output) pclog("Stack %04X\n",SP);
PUSHW(oldss);
if (output) pclog("Write SS to %04X:%04X\n",SS,SP);
PUSHW(oldsp2);
if (cpu_state.abrt)
{
pclog("ABRT PUSHW\n");
SS = oldss;
ESP = oldsp2;
CS = oldcs;
return;
}
if (output) pclog("Write SP to %04X:%04X\n",SS,SP);
// if (output) pclog("Stack %04X %i %04X:%04X\n",SP,count,oldssbase,oldsp);
// if (output) pclog("PUSH %04X %04X %i %i now %04X:%08X\n",oldss,oldsp,count,stack32,SS,ESP);
if (count)
{
while (count)
{
count--;
tempw=readmemw(oldssbase,(oldsp&0xFFFF)+(count*2));
if (output) pclog("PUSH %04X\n",tempw);
PUSHW(tempw);
if (cpu_state.abrt)
{
pclog("ABRT COPYW\n");
SS = oldss;
ESP = oldsp2;
CS = oldcs;
return;
}
}
}
// if (output) pclog("Stack %04X\n",SP);
// if (count) x86abort("Call gate with count\n");
}
cycles -= timing_call_pm_gate_inner;
break;
}
else if (DPL > CPL)
{
pclog("Call gate DPL > CPL");
x86gpf(NULL,seg2&~3);
return;
}
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
CS=seg2;
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3]&0x40);
cpu_state.pc=newpc;
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
cycles -= timing_call_pm_gate;
break;
default:
pclog("Call gate bad segment type\n");
x86gpf(NULL,seg2&~3);
return;
}
break;
case 0x100: /*286 Task gate*/
case 0x900: /*386 Task gate*/
// pclog("Task gate\n");
cpu_state.pc = old_pc;
cpl_override=1;
taskswitch286(seg,segdat,segdat[2]&0x800);
cpl_override=0;
break;
default:
pclog("Bad CALL special descriptor %03X\n",segdat[2]&0xF00);
x86gpf(NULL,seg&~3);
return;
// dumpregs();
// exit(-1);
}
}
// pclog("CS = %04X base=%06X limit=%04X access=%02X %04X\n",CS,cs,_cs.limit,_cs.access,addr);
// dumpregs();
// exit(-1);
}
else
{
cpu_state.seg_cs.base=seg<<4;
cpu_state.seg_cs.limit=0xFFFF;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffff;
CS=seg;
if (cpu_state.eflags&VM_FLAG) cpu_state.seg_cs.access=(3<<5) | 2;
else cpu_state.seg_cs.access=(0<<5) | 2;
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
}
}
void pmoderetf(int is32, uint16_t off)
{
uint32_t newpc;
uint32_t newsp;
uint32_t addr, oaddr;
uint16_t segdat[4],segdat2[4],seg,newss;
uint32_t oldsp=ESP;
if (output) pclog("RETF %i %04X:%04X %08X %04X\n",is32,CS,cpu_state.pc,cr0,cpu_state.eflags);
if (is32)
{
newpc=POPL();
seg=POPL(); if (cpu_state.abrt) return;
}
else
{
if (output) pclog("PC read from %04X:%04X\n",SS,SP);
newpc=POPW();
if (output) pclog("CS read from %04X:%04X\n",SS,SP);
seg=POPW(); if (cpu_state.abrt) return;
}
if (output) pclog("Return to %04X:%08X\n",seg,newpc);
if ((seg&3)<CPL)
{
pclog("RETF RPL<CPL %04X %i %i %04X:%08X\n",seg,CPL,ins,CS,cpu_state.pc);
// output=3;
// timetolive=100;
// dumpregs();
// exit(-1);
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
if (!(seg&~3))
{
pclog("Trying to load CS with NULL selector! retf\n");
// dumpregs();
// exit(-1);
x86gpf(NULL,0);
return;
}
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X RETF\n",seg,ldt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X RETF\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
// dumpregs();
// exit(-1);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) { ESP=oldsp; return; }
oaddr = addr;
if (output) pclog("CPL %i RPL %i %i\n",CPL,seg&3,is32);
if (stack32) ESP+=off;
else SP+=off;
if (CPL==(seg&3))
{
if (output) pclog("RETF CPL = RPL %04X\n", segdat[2]);
switch (segdat[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming*/
if (CPL != DPL)
{
pclog("RETF non-conforming CPL != DPL\n");
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
break;
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
if (CPL < DPL)
{
pclog("RETF non-conforming CPL < DPL\n");
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
break;
default:
pclog("RETF CS not code segment\n");
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
pclog("RETF CS not present %i %04X %04X %04X\n",ins, segdat[0], segdat[1], segdat[2]);
ESP=oldsp;
x86np("RETF CS not present\n", seg & 0xfffc);
return;
}
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
cpu_state.pc=newpc;
if (segdat[2] & 0x400)
segdat[2] = (segdat[2] & ~(3 << (5+8))) | ((seg & 3) << (5+8));
CS = seg;
do_seg_load(&cpu_state.seg_cs, segdat);
cpu_state.seg_cs.access = (cpu_state.seg_cs.access & ~(3 << 5)) | ((CS & 3) << 5);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3] & 0x40);
// pclog("CPL=RPL return to %04X:%08X\n",CS,pc);
cycles -= timing_retf_pm;
}
else
{
switch (segdat[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming*/
if ((seg&3) != DPL)
{
pclog("RETF non-conforming RPL != DPL\n");
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
if (output) pclog("RETF non-conforming, %i %i\n",seg&3, DPL);
break;
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
if ((seg&3) < DPL)
{
pclog("RETF non-conforming RPL < DPL\n");
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
if (output) pclog("RETF conforming, %i %i\n",seg&3, DPL);
break;
default:
pclog("RETF CS not code segment\n");
ESP=oldsp;
x86gpf(NULL,seg&~3);
return;
}
if (!(segdat[2]&0x8000))
{
pclog("RETF CS not present! %i %04X %04X %04X\n",ins, segdat[0], segdat[1], segdat[2]);
ESP=oldsp;
x86np("RETF CS not present\n", seg & 0xfffc);
return;
}
if (is32)
{
newsp=POPL();
newss=POPL(); if (cpu_state.abrt) return;
// pclog("is32 new stack %04X:%04X\n",newss,newsp);
}
else
{
if (output) pclog("SP read from %04X:%04X\n",SS,SP);
newsp=POPW();
if (output) pclog("SS read from %04X:%04X\n",SS,SP);
newss=POPW(); if (cpu_state.abrt) return;
// pclog("!is32 new stack %04X:%04X\n",newss,newsp);
}
if (output) pclog("Read new stack : %04X:%04X (%08X)\n", newss, newsp, ldt.base);
if (!(newss&~3))
{
pclog("RETF loading null SS\n");
ESP=oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr=newss&~7;
if (newss&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X RETF SS\n",newss,gdt.limit);
ESP=oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X RETF SS\n",newss,gdt.limit);
ESP=oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) { ESP=oldsp; return; }
if (output) pclog("Segment data %04X %04X %04X %04X\n", segdat2[0], segdat2[1], segdat2[2], segdat2[3]);
// if (((newss & 3) != DPL) || (DPL2 != DPL))
if ((newss & 3) != (seg & 3))
{
pclog("RETF loading SS with wrong permissions %i %i %04X %04X\n", newss & 3, seg & 3, newss, seg);
ESP=oldsp;
// output = 3;
// dumpregs();
// exit(-1);
x86gpf(NULL,newss&~3);
return;
}
if ((segdat2[2]&0x1A00)!=0x1200)
{
pclog("RETF loading SS wrong type\n");
ESP=oldsp;
// dumpregs();
// exit(-1);
x86gpf(NULL,newss&~3);
return;
}
if (!(segdat2[2]&0x8000))
{
pclog("RETF loading SS not present\n");
ESP=oldsp;
x86np("RETF loading SS not present\n", newss & 0xfffc);
return;
}
if (DPL2 != (seg & 3))
{
pclog("RETF loading SS with wrong permissions2 %i %i %04X %04X\n", DPL2, seg & 3, newss, seg);
ESP=oldsp;
x86gpf(NULL,newss&~3);
return;
}
SS=newss;
set_stack32((segdat2[3] & 0x40) ? 1 : 0);
if (stack32) ESP=newsp;
else SP=newsp;
do_seg_load(&cpu_state.seg_ss, segdat2);
#ifdef SEL_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat2[2] | 0x100); /*Set accessed bit*/
#ifdef CS_ACCESSED
writememw(0, oaddr+4, segdat[2] | 0x100); /*Set accessed bit*/
#endif
cpl_override = 0;
#endif
/*Conforming segments don't change CPL, so CPL = RPL*/
if (segdat[2]&0x400)
segdat[2] = (segdat[2] & ~(3 << (5+8))) | ((seg & 3) << (5+8));
cpu_state.pc=newpc;
CS=seg;
do_seg_load(&cpu_state.seg_cs, segdat);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3] & 0x40);
if (stack32) ESP+=off;
else SP+=off;
check_seg_valid(&cpu_state.seg_ds);
check_seg_valid(&cpu_state.seg_es);
check_seg_valid(&cpu_state.seg_fs);
check_seg_valid(&cpu_state.seg_gs);
// pclog("CPL<RPL return to %04X:%08X %04X:%08X\n",CS,pc,SS,ESP);
cycles -= timing_retf_pm_outer;
}
}
void pmodeint(int num, int soft)
{
uint16_t segdat[4],segdat2[4],segdat3[4];
uint32_t addr, oaddr;
uint16_t newss;
uint32_t oldss,oldsp;
int type;
uint32_t newsp;
uint16_t seg=0;
int new_cpl;
// if (!num) pclog("Pmode int 0 at %04X(%06X):%08X\n",CS,cs,pc);
// pclog("Pmode int %02X %i %04X:%08X %04X:%08X %i\n",num,soft,CS,pc, SS, ESP, abrt);
if (cpu_state.eflags&VM_FLAG && IOPL!=3 && soft)
{
if (output) pclog("V86 banned int\n");
pclog("V86 banned int!\n");
x86gpf(NULL,0);
return;
// dumpregs();
// exit(-1);
}
addr=(num<<3);
if (addr>=idt.limit)
{
if (num==8)
{
/*Triple fault - reset!*/
pclog("Triple fault!\n");
// output=1;
softresetx86();
cpu_set_edx();
}
else if (num==0xD)
{
pclog("Double fault!\n");
pmodeint(8,0);
}
else
{
pclog("INT out of range\n");
x86gpf(NULL,(num*8)+2+(soft)?0:1);
}
if (output) pclog("addr >= IDT.limit\n");
return;
}
addr+=idt.base;
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(2,addr);
segdat[2]=readmemw(4,addr);
segdat[3]=readmemw(6,addr); cpl_override=0; if (cpu_state.abrt) { pclog("Abrt reading from %08X\n",addr); return; }
oaddr = addr;
if (output) pclog("Addr %08X seg %04X %04X %04X %04X\n",addr,segdat[0],segdat[1],segdat[2],segdat[3]);
if (!(segdat[2]&0x1F00))
{
// pclog("No seg\n");
if (cpu_state.eflags & VM_FLAG) /*This fires on all V86 interrupts in EMM386. Mark as expected to prevent code churn*/
x86gpf_expected(NULL,(num*8)+2);
else
x86gpf(NULL,(num*8)+2);
return;
}
if (DPL<CPL && soft)
{
//pclog("INT : DPL<CPL %04X:%08X %i %i %04X\n",CS,pc,DPL,CPL,segdat[2]);
x86gpf(NULL,(num*8)+2);
return;
}
type=segdat[2]&0x1F00;
// if (output) pclog("Gate type %04X\n",type);
switch (type)
{
case 0x600: case 0x700: case 0xE00: case 0xF00: /*Interrupt and trap gates*/
intgatesize=(type>=0x800)?32:16;
// if (output) pclog("Int gate %04X %i oldpc %04X pc %04X\n",type,intgatesize,oldpc,pc);
if (!(segdat[2]&0x8000))
{
pclog("Int gate not present\n");
x86np("Int gate not present\n", (num << 3) | 2);
return;
}
seg=segdat[1];
new_cpl = seg & 3;
// pclog("Interrupt gate : %04X:%04X%04X\n",seg,segdat[3],segdat[0]);
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X INT\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X INT %i\n",seg,gdt.limit,ins);
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
/* if ((seg&3) < CPL)
{
pclog("INT to higher level\n");
x86gpf(NULL,seg&~3);
return;
}*/
cpl_override=1;
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
oaddr = addr;
if (DPL2 > CPL)
{
pclog("INT to higher level 2\n");
x86gpf(NULL,seg&~3);
return;
}
//pclog("Type %04X\n",segdat2[2]);
switch (segdat2[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming*/
if (DPL2<CPL)
{
if (!(segdat2[2]&0x8000))
{
pclog("Int gate CS not present\n");
x86np("Int gate CS not present\n", segdat[1] & 0xfffc);
return;
}
if ((cpu_state.eflags & VM_FLAG) && DPL2)
{
pclog("V86 calling int gate, DPL != 0\n");
x86gpf(NULL,segdat[1]&0xFFFC);
return;
}
/*Load new stack*/
oldss=SS;
oldsp=ESP;
cpl_override=1;
if (tr.access&8)
{
addr = 4 + tr.base + (DPL2 * 8);
newss=readmemw(0,addr+4);
newsp=readmeml(0,addr);
}
else
{
addr = 2 + tr.base + (DPL2 * 4);
newss=readmemw(0,addr+2);
newsp=readmemw(0,addr);
}
cpl_override=0;
if (!(newss&~3))
{
pclog("Int gate loading null SS\n");
x86ss(NULL,newss&~3);
return;
}
addr=newss&~7;
if (newss&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X PMODEINT SS\n",newss,gdt.limit);
x86ss(NULL,newss&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X CSC\n",newss,gdt.limit);
x86ss(NULL,newss&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat3[0]=readmemw(0,addr);
segdat3[1]=readmemw(0,addr+2);
segdat3[2]=readmemw(0,addr+4);
segdat3[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) return;
if (((newss & 3) != DPL2) || (DPL3 != DPL2))
{
pclog("Int gate loading SS with wrong permissions\n");
x86ss(NULL,newss&~3);
return;
}
if ((segdat3[2]&0x1A00)!=0x1200)
{
pclog("Int gate loading SS wrong type\n");
x86ss(NULL,newss&~3);
return;
}
if (!(segdat3[2]&0x8000))
{
pclog("Int gate loading SS not present\n");
x86np("Int gate loading SS not present\n", newss & 0xfffc);
return;
}
SS=newss;
set_stack32((segdat3[3] & 0x40) ? 1 : 0);
if (stack32) ESP=newsp;
else SP=newsp;
do_seg_load(&cpu_state.seg_ss, segdat3);
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat3[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
if (output) pclog("New stack %04X:%08X\n",SS,ESP);
cpl_override=1;
if (type>=0x800)
{
// if (output) pclog("Push 32 %i\n",eflags&VM_FLAG);
if (cpu_state.eflags & VM_FLAG)
{
PUSHL(GS);
PUSHL(FS);
PUSHL(DS);
PUSHL(ES); if (cpu_state.abrt) return;
loadseg(0,&cpu_state.seg_ds);
loadseg(0,&cpu_state.seg_es);
loadseg(0,&cpu_state.seg_fs);
loadseg(0,&cpu_state.seg_gs);
}
PUSHL(oldss);
PUSHL(oldsp);
PUSHL(cpu_state.flags | (cpu_state.eflags << 16));
// if (soft) pclog("Pushl CS %08X\n", CS);
PUSHL(CS);
// if (soft) pclog("Pushl PC %08X\n", pc);
PUSHL(cpu_state.pc); if (cpu_state.abrt) return;
// if (output) pclog("32Stack %04X:%08X\n",SS,ESP);
}
else
{
// if (output) pclog("Push 16\n");
PUSHW(oldss);
PUSHW(oldsp);
PUSHW(cpu_state.flags);
// if (soft) pclog("Pushw CS %04X\n", CS);
PUSHW(CS);
// if (soft) pclog("Pushw pc %04X\n", pc);
PUSHW(cpu_state.pc); if (cpu_state.abrt) return;
// if (output) pclog("16Stack %04X:%08X\n",SS,ESP);
}
cpl_override=0;
cpu_state.seg_cs.access=0;
cycles -= timing_int_pm_outer - timing_int_pm;
// pclog("Non-confirming int gate, CS = %04X\n");
break;
}
else if (DPL2!=CPL)
{
pclog("Non-conforming int gate DPL != CPL\n");
x86gpf(NULL,seg&~3);
return;
}
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
if (!(segdat2[2]&0x8000))
{
pclog("Int gate CS not present\n");
x86np("Int gate CS not present\n", segdat[1] & 0xfffc);
return;
}
if ((cpu_state.eflags & VM_FLAG) && DPL2<CPL)
{
pclog("Int gate V86 mode DPL2<CPL\n");
x86gpf(NULL,seg&~3);
return;
}
// if (!stack_changed && ssegs) restore_stack();
if (type>0x800)
{
PUSHL(cpu_state.flags | (cpu_state.eflags << 16));
// if (soft) pclog("Pushlc CS %08X\n", CS);
PUSHL(CS);
// if (soft) pclog("Pushlc PC %08X\n", pc);
PUSHL(cpu_state.pc); if (cpu_state.abrt) return;
}
else
{
PUSHW(cpu_state.flags);
// if (soft) pclog("Pushwc CS %04X\n", CS);
PUSHW(CS);
// if (soft) pclog("Pushwc PC %04X\n", pc);
PUSHW(cpu_state.pc); if (cpu_state.abrt) return;
}
new_cpl = CS & 3;
break;
default:
pclog("Int gate CS not code segment - %04X %04X %04X %04X\n",segdat2[0],segdat2[1],segdat2[2],segdat2[3]);
x86gpf(NULL,seg&~3);
return;
}
do_seg_load(&cpu_state.seg_cs, segdat2);
CS = (seg & ~3) | new_cpl;
cpu_state.seg_cs.access = (cpu_state.seg_cs.access & ~(3 << 5)) | (new_cpl << 5);
// pclog("New CS = %04X\n",CS);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
if (type>0x800) cpu_state.pc=segdat[0]|(segdat[3]<<16);
else cpu_state.pc=segdat[0];
set_use32(segdat2[3]&0x40);
// pclog("Int gate done!\n");
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, oaddr+4, segdat2[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
cpu_state.eflags &= ~VM_FLAG;
cpu_cur_status &= ~CPU_STATUS_V86;
if (!(type&0x100))
{
cpu_state.flags &= ~I_FLAG;
// pclog("INT %02X disabling interrupts %i\n",num,soft);
}
cpu_state.flags &= ~(T_FLAG|NT_FLAG);
// if (output) pclog("Final Stack %04X:%08X\n",SS,ESP);
cycles -= timing_int_pm;
break;
case 0x500: /*Task gate*/
// pclog("Task gate\n");
seg=segdat[1];
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X INT\n",seg,gdt.limit);
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X INT %i\n",seg,gdt.limit,ins);
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6);
cpl_override=0; if (cpu_state.abrt) return;
if (!(segdat2[2]&0x8000))
{
pclog("Int task gate not present\n");
x86np("Int task gate not present\n", segdat[1] & 0xfffc);
return;
}
optype=OPTYPE_INT;
cpl_override=1;
taskswitch286(seg,segdat2,segdat2[2]&0x800);
cpl_override=0;
break;
default:
pclog("Bad int gate type %04X %04X %04X %04X %04X\n",segdat[2]&0x1F00,segdat[0],segdat[1],segdat[2],segdat[3]);
x86gpf(NULL,seg&~3);
return;
}
}
void pmodeiret(int is32)
{
uint32_t newsp;
uint16_t newss;
uint32_t tempflags,flagmask;
uint32_t newpc;
uint16_t segdat[4],segdat2[4];
uint16_t segs[4];
uint16_t seg = 0;
uint32_t addr, oaddr;
uint32_t oldsp=ESP;
if (is386 && (cpu_state.eflags & VM_FLAG))
{
// if (output) pclog("V86 IRET\n");
if (IOPL!=3)
{
pclog("V86 IRET! IOPL!=3\n");
x86gpf(NULL,0);
return;
}
if (is32)
{
newpc=POPL();
seg=POPL();
tempflags=POPL(); if (cpu_state.abrt) return;
}
else
{
newpc=POPW();
seg=POPW();
tempflags=POPW(); if (cpu_state.abrt) return;
}
cpu_state.pc=newpc;
cpu_state.seg_cs.base=seg<<4;
cpu_state.seg_cs.limit=0xFFFF;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffff;
CS=seg;
cpu_state.flags = (cpu_state.flags & 0x3000) | (tempflags & 0xCFD5) | 2;
cycles -= timing_iret_rm;
return;
}
// pclog("IRET %i\n",is32);
//flushmmucache();
// if (output) pclog("Pmode IRET %04X:%04X ",CS,pc);
if (cpu_state.flags & NT_FLAG)
{
// pclog("NT IRET\n");
seg=readmemw(tr.base,0);
addr=seg&~7;
if (seg&4)
{
pclog("TS LDT %04X %04X IRET\n",seg,gdt.limit);
x86ts(NULL,seg&~3);
return;
}
else
{
if (addr>=gdt.limit)
{
pclog("TS Bigger than GDT limit %04X %04X IRET\n",seg,gdt.limit);
x86ts(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6);
taskswitch286(seg,segdat,segdat[2] & 0x800);
cpl_override=0;
return;
}
flagmask=0xFFFF;
if (CPL) flagmask&=~0x3000;
if (IOPL<CPL) flagmask&=~0x200;
// if (output) pclog("IRET %i %i %04X %i\n",CPL,IOPL,flagmask,is32);
if (is32)
{
// pclog("POP\n");
newpc=POPL();
seg=POPL();
tempflags=POPL(); if (cpu_state.abrt) { ESP = oldsp; return; }
// if (output) pclog("IRETD pop %08X %08X %08X\n",newpc,seg,tempflags);
if (is386 && ((tempflags>>16)&VM_FLAG))
{
// pclog("IRETD to V86\n");
newsp=POPL();
newss=POPL();
segs[0]=POPL();
segs[1]=POPL();
segs[2]=POPL();
segs[3]=POPL(); if (cpu_state.abrt) { ESP = oldsp; return; }
// pclog("Pop stack %04X:%04X\n",newss,newsp);
cpu_state.eflags = tempflags>>16;
cpu_cur_status |= CPU_STATUS_V86;
loadseg(segs[0],&cpu_state.seg_es);
do_seg_v86_init(&cpu_state.seg_es);
loadseg(segs[1],&cpu_state.seg_ds);
do_seg_v86_init(&cpu_state.seg_ds);
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
loadseg(segs[2],&cpu_state.seg_fs);
do_seg_v86_init(&cpu_state.seg_fs);
loadseg(segs[3],&cpu_state.seg_gs);
do_seg_v86_init(&cpu_state.seg_gs);
// pclog("V86 IRET %04X:%08X\n",SS,ESP);
// output=3;
cpu_state.pc = newpc & 0xffff;
cpu_state.seg_cs.base=seg<<4;
cpu_state.seg_cs.limit=0xFFFF;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffff;
CS=seg;
cpu_state.seg_cs.access=(3<<5) | 2;
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
ESP=newsp;
loadseg(newss,&cpu_state.seg_ss);
do_seg_v86_init(&cpu_state.seg_ss);
cpu_cur_status |= CPU_STATUS_NOTFLATSS;
use32=0;
cpu_cur_status &= ~CPU_STATUS_USE32;
cpu_state.flags = (tempflags&0xFFD5)|2;
cycles -= timing_iret_v86;
// pclog("V86 IRET to %04X:%04X %04X:%04X %04X %04X %04X %04X %i\n",CS,pc,SS,SP,DS,ES,FS,GS,abrt);
// if (CS==0xFFFF && pc==0xFFFFFFFF) timetolive=12;
/* {
dumpregs();
exit(-1);
}*/
return;
}
}
else
{
newpc=POPW();
seg=POPW();
tempflags=POPW(); if (cpu_state.abrt) { ESP = oldsp; return; }
}
// if (!is386) tempflags&=0xFFF;
// pclog("Returned to %04X:%08X %04X %04X %i\n",seg,newpc,flags,tempflags, ins);
if (!(seg&~3))
{
pclog("IRET CS=0\n");
ESP = oldsp;
// dumpregs();
// exit(-1);
x86gpf(NULL,0);
return;
}
// if (output) pclog("IRET %04X:%08X\n",seg,newpc);
addr=seg&~7;
if (seg&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X IRET\n",seg,gdt.limit);
ESP = oldsp;
x86gpf(NULL,seg&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X IRET\n",seg,gdt.limit);
ESP = oldsp;
x86gpf(NULL,seg&~3);
return;
}
addr+=gdt.base;
}
if ((seg&3) < CPL)
{
pclog("IRET to lower level\n");
ESP = oldsp;
x86gpf(NULL,seg&~3);
return;
}
cpl_override=1;
segdat[0]=readmemw(0,addr);
segdat[1]=readmemw(0,addr+2);
segdat[2]=readmemw(0,addr+4);
segdat[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) { ESP = oldsp; return; }
// pclog("Seg type %04X %04X\n",segdat[2]&0x1F00,segdat[2]);
switch (segdat[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming code*/
if ((seg&3) != DPL)
{
pclog("IRET NC DPL %04X %04X %04X %04X %04X\n", seg, segdat[0], segdat[1], segdat[2], segdat[3]);
ESP = oldsp;
// dumpregs();
// exit(-1);
x86gpf(NULL,seg&~3);
return;
}
break;
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming code*/
if ((seg&3) < DPL)
{
pclog("IRET C DPL\n");
ESP = oldsp;
x86gpf(NULL,seg&~3);
return;
}
break;
default:
pclog("IRET CS != code seg\n");
ESP = oldsp;
x86gpf(NULL,seg&~3);
// dumpregs();
// exit(-1);
return;
}
if (!(segdat[2]&0x8000))
{
pclog("IRET CS not present %i %04X %04X %04X\n",ins, segdat[0], segdat[1], segdat[2]);
ESP = oldsp;
x86np("IRET CS not present\n", seg & 0xfffc);
return;
}
// pclog("Seg %04X CPL %04X\n",seg,CPL);
if ((seg&3) == CPL)
{
// pclog("Same level\n");
CS=seg;
do_seg_load(&cpu_state.seg_cs, segdat);
cpu_state.seg_cs.access = (cpu_state.seg_cs.access & ~(3 << 5)) | ((CS & 3) << 5);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3]&0x40);
#ifdef CS_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat[2] | 0x100); /*Set accessed bit*/
cpl_override = 0;
#endif
cycles -= timing_iret_pm;
}
else /*Return to outer level*/
{
oaddr = addr;
if (output) pclog("Outer level\n");
if (is32)
{
newsp=POPL();
newss=POPL(); if (cpu_state.abrt) { ESP = oldsp; return; }
}
else
{
newsp=POPW();
newss=POPW(); if (cpu_state.abrt) { ESP = oldsp; return; }
}
if (output) pclog("IRET load stack %04X:%04X\n",newss,newsp);
if (!(newss&~3))
{
pclog("IRET loading null SS\n");
ESP = oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr=newss&~7;
if (newss&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X PMODEIRET SS\n",newss,gdt.limit);
ESP = oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X PMODEIRET\n",newss,gdt.limit);
ESP = oldsp;
x86gpf(NULL,newss&~3);
return;
}
addr+=gdt.base;
}
cpl_override=1;
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6); cpl_override=0; if (cpu_state.abrt) { ESP = oldsp; return; }
// pclog("IRET SS sd2 %04X\n",segdat2[2]);
// if (((newss & 3) != DPL) || (DPL2 != DPL))
if ((newss & 3) != (seg & 3))
{
pclog("IRET loading SS with wrong permissions %04X %04X\n", newss, seg);
ESP = oldsp;
// dumpregs();
// exit(-1);
x86gpf(NULL,newss&~3);
return;
}
if ((segdat2[2]&0x1A00)!=0x1200)
{
pclog("IRET loading SS wrong type\n");
ESP = oldsp;
x86gpf(NULL,newss&~3);
return;
}
if (DPL2 != (seg & 3))
{
pclog("IRET loading SS with wrong permissions2 %i %i %04X %04X\n", DPL2, seg & 3, newss, seg);
ESP = oldsp;
x86gpf(NULL,newss&~3);
return;
}
if (!(segdat2[2]&0x8000))
{
pclog("IRET loading SS not present\n");
ESP = oldsp;
x86np("IRET loading SS not present\n", newss & 0xfffc);
return;
}
SS=newss;
set_stack32((segdat2[3] & 0x40) ? 1 : 0);
if (stack32) ESP=newsp;
else SP=newsp;
do_seg_load(&cpu_state.seg_ss, segdat2);
#ifdef SEL_ACCESSED
cpl_override = 1;
writememw(0, addr+4, segdat2[2] | 0x100); /*Set accessed bit*/
#ifdef CS_ACCESSED
writememw(0, oaddr+4, segdat[2] | 0x100); /*Set accessed bit*/
#endif
cpl_override = 0;
#endif
/*Conforming segments don't change CPL, so CPL = RPL*/
if (segdat[2]&0x400)
segdat[2] = (segdat[2] & ~(3 << (5+8))) | ((seg & 3) << (5+8));
CS=seg;
do_seg_load(&cpu_state.seg_cs, segdat);
cpu_state.seg_cs.access = (cpu_state.seg_cs.access & ~(3 << 5)) | ((CS & 3) << 5);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat[3] & 0x40);
check_seg_valid(&cpu_state.seg_ds);
check_seg_valid(&cpu_state.seg_es);
check_seg_valid(&cpu_state.seg_fs);
check_seg_valid(&cpu_state.seg_gs);
cycles -= timing_iret_pm_outer;
}
cpu_state.pc=newpc;
cpu_state.flags = (cpu_state.flags&~flagmask) | (tempflags&flagmask&0xFFD5)|2;
if (is32) cpu_state.eflags = tempflags>>16;
// pclog("done\n");
}
void taskswitch286(uint16_t seg, uint16_t *segdat, int is32)
{
uint32_t base;
uint32_t limit;
uint32_t templ;
uint16_t tempw;
uint32_t new_cr3=0;
uint16_t new_es,new_cs,new_ss,new_ds,new_fs,new_gs;
uint16_t new_ldt;
uint32_t new_eax,new_ebx,new_ecx,new_edx,new_esp,new_ebp,new_esi,new_edi,new_pc,new_flags;
uint32_t addr;
uint16_t segdat2[4];
//output=3;
base=segdat[1]|((segdat[2]&0xFF)<<16);
limit=segdat[0];
if(is386)
{
base |= (segdat[3]>>8)<<24;
limit |= (segdat[3]&0xF)<<16;
}
// pclog("286 Task switch! %04X:%04X\n",CS,pc);
/// pclog("TSS %04X base %08X limit %04X old TSS %04X %08X %i\n",seg,base,limit,tr.seg,tr.base,ins);
// / pclog("%04X %04X %04X %04X\n",segdat[0],segdat[1],segdat[2],segdat[3]);
if (is32)
{
// if (output) pclog("32-bit TSS\n");
if (limit < 103)
{
pclog("32-bit TSS %04X limit less than 103.\n", seg);
x86ts(NULL, seg);
return;
}
if (optype==JMP || optype==CALL || optype==OPTYPE_INT)
{
if (tr.seg&4) tempw=readmemw(ldt.base,(seg&~7)+4);
else tempw=readmemw(gdt.base,(seg&~7)+4);
if (cpu_state.abrt) return;
tempw|=0x200;
if (tr.seg&4) writememw(ldt.base,(seg&~7)+4,tempw);
else writememw(gdt.base,(seg&~7)+4,tempw);
}
if (cpu_state.abrt) return;
if (optype==IRET) cpu_state.flags&=~NT_FLAG;
// if (output) pclog("Write PC %08X %08X\n",tr.base,pc);
cpu_386_flags_rebuild();
writememl(tr.base,0x1C,cr3);
writememl(tr.base,0x20,cpu_state.pc);
writememl(tr.base,0x24,cpu_state.flags | (cpu_state.eflags<<16));
writememl(tr.base,0x28,EAX);
writememl(tr.base,0x2C,ECX);
writememl(tr.base,0x30,EDX);
writememl(tr.base,0x34,EBX);
writememl(tr.base,0x38,ESP);
writememl(tr.base,0x3C,EBP);
writememl(tr.base,0x40,ESI);
writememl(tr.base,0x44,EDI);
writememl(tr.base,0x48,ES);
// if (output) pclog("Write CS %04X to %08X\n",CS,tr.base+0x4C);
writememl(tr.base,0x4C,CS);
writememl(tr.base,0x50,SS);
writememl(tr.base,0x54,DS);
writememl(tr.base,0x58,FS);
writememl(tr.base,0x5C,GS);
if (optype==JMP || optype==IRET)
{
if (tr.seg&4) tempw=readmemw(ldt.base,(tr.seg&~7)+4);
else tempw=readmemw(gdt.base,(tr.seg&~7)+4);
if (cpu_state.abrt) return;
tempw&=~0x200;
if (tr.seg&4) writememw(ldt.base,(tr.seg&~7)+4,tempw);
else writememw(gdt.base,(tr.seg&~7)+4,tempw);
}
if (cpu_state.abrt) return;
if (optype==OPTYPE_INT || optype==CALL)
{
writememl(base,0,tr.seg);
if (cpu_state.abrt)
return;
}
new_cr3=readmeml(base,0x1C);
new_pc=readmeml(base,0x20);
new_flags=readmeml(base,0x24);
if (optype == OPTYPE_INT || optype == CALL)
new_flags |= NT_FLAG;
new_eax=readmeml(base,0x28);
new_ecx=readmeml(base,0x2C);
new_edx=readmeml(base,0x30);
new_ebx=readmeml(base,0x34);
new_esp=readmeml(base,0x38);
new_ebp=readmeml(base,0x3C);
new_esi=readmeml(base,0x40);
new_edi=readmeml(base,0x44);
new_es=readmemw(base,0x48);
// if (output) pclog("Read CS from %08X\n",base+0x4C);
new_cs=readmemw(base,0x4C);
new_ss=readmemw(base,0x50);
new_ds=readmemw(base,0x54);
new_fs=readmemw(base,0x58);
new_gs=readmemw(base,0x5C);
new_ldt=readmemw(base,0x60);
cr0 |= 8;
cr3=new_cr3;
// pclog("TS New CR3 %08X\n",cr3);
flushmmucache();
cpu_state.pc=new_pc;
// if (output) pclog("New pc %08X\n",new_pc);
cpu_state.flags = new_flags;
cpu_state.eflags = new_flags>>16;
cpu_386_flags_extract();
// if (output) pclog("Load LDT %04X\n",new_ldt);
ldt.seg=new_ldt;
templ=(ldt.seg&~7)+gdt.base;
// if (output) pclog("Load from %08X %08X\n",templ,gdt.base);
ldt.limit=readmemw(0,templ);
if (readmemb(0,templ+6)&0x80)
{
ldt.limit<<=12;
ldt.limit|=0xFFF;
}
ldt.base=(readmemw(0,templ+2))|(readmemb(0,templ+4)<<16)|(readmemb(0,templ+7)<<24);
// if (output) pclog("Limit %04X Base %08X\n",ldt.limit,ldt.base);
if (cpu_state.eflags & VM_FLAG)
{
loadcs(new_cs);
set_use32(0);
cpu_cur_status |= CPU_STATUS_V86;
}
else
{
if (!(new_cs&~3))
{
pclog("TS loading null CS\n");
x86ts(NULL,0);
return;
}
addr=new_cs&~7;
if (new_cs&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X %04X TS\n",new_cs,ldt.limit,addr);
x86ts(NULL,new_cs&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X TS\n",new_cs,gdt.limit);
x86ts(NULL,new_cs&~3);
return;
}
addr+=gdt.base;
}
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6);
if (!(segdat2[2]&0x8000))
{
pclog("TS loading CS not present\n");
x86np("TS loading CS not present\n", new_cs & 0xfffc);
return;
}
switch (segdat2[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming*/
if ((new_cs&3) != DPL2)
{
pclog("TS load CS non-conforming RPL != DPL");
x86ts(NULL,new_cs&~3);
return;
}
break;
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
if ((new_cs&3) < DPL2)
{
pclog("TS load CS non-conforming RPL < DPL");
x86ts(NULL,new_cs&~3);
return;
}
break;
default:
pclog("TS load CS not code segment\n");
x86ts(NULL,new_cs&~3);
return;
}
// if (output) pclog("new_cs %04X\n",new_cs);
CS=new_cs;
do_seg_load(&cpu_state.seg_cs, segdat2);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(segdat2[3] & 0x40);
cpu_cur_status &= ~CPU_STATUS_V86;
}
EAX=new_eax;
ECX=new_ecx;
EDX=new_edx;
EBX=new_ebx;
ESP=new_esp;
EBP=new_ebp;
ESI=new_esi;
EDI=new_edi;
if (output) pclog("Load ES %04X\n",new_es);
loadseg(new_es,&cpu_state.seg_es);
if (output) pclog("Load SS %04X\n",new_ss);
loadseg(new_ss,&cpu_state.seg_ss);
if (output) pclog("Load DS %04X\n",new_ds);
loadseg(new_ds,&cpu_state.seg_ds);
if (output) pclog("Load FS %04X\n",new_fs);
loadseg(new_fs,&cpu_state.seg_fs);
if (output) pclog("Load GS %04X\n",new_gs);
loadseg(new_gs,&cpu_state.seg_gs);
if (output) pclog("Resuming at %04X:%08X\n",CS,cpu_state.pc);
}
else
{
// pclog("16-bit TSS\n");
// resetx86();
if (limit < 43)
{
pclog("16-bit TSS %04X limit less than 43.\n", seg);
x86ts(NULL, seg);
return;
}
if (optype==JMP || optype==CALL || optype==OPTYPE_INT)
{
if (tr.seg&4) tempw=readmemw(ldt.base,(seg&~7)+4);
else tempw=readmemw(gdt.base,(seg&~7)+4);
if (cpu_state.abrt) return;
tempw|=0x200;
if (tr.seg&4) writememw(ldt.base,(seg&~7)+4,tempw);
else writememw(gdt.base,(seg&~7)+4,tempw);
}
if (cpu_state.abrt) return;
if (optype == IRET)
cpu_state.flags &= ~NT_FLAG;
// if (output) pclog("Write PC %08X %08X\n",tr.base,pc);
cpu_386_flags_rebuild();
writememw(tr.base,0x0E,cpu_state.pc);
writememw(tr.base,0x10,cpu_state.flags);
writememw(tr.base,0x12,AX);
writememw(tr.base,0x14,CX);
writememw(tr.base,0x16,DX);
writememw(tr.base,0x18,BX);
writememw(tr.base,0x1A,SP);
writememw(tr.base,0x1C,BP);
writememw(tr.base,0x1E,SI);
writememw(tr.base,0x20,DI);
writememw(tr.base,0x22,ES);
// if (output) pclog("Write CS %04X to %08X\n",CS,tr.base+0x4C);
writememw(tr.base,0x24,CS);
writememw(tr.base,0x26,SS);
writememw(tr.base,0x28,DS);
if (optype==JMP || optype==IRET)
{
if (tr.seg&4) tempw=readmemw(ldt.base,(tr.seg&~7)+4);
else tempw=readmemw(gdt.base,(tr.seg&~7)+4);
if (cpu_state.abrt) return;
tempw&=~0x200;
if (tr.seg&4) writememw(ldt.base,(tr.seg&~7)+4,tempw);
else writememw(gdt.base,(tr.seg&~7)+4,tempw);
}
if (cpu_state.abrt) return;
if (optype==OPTYPE_INT || optype==CALL)
{
writememw(base,0,tr.seg);
if (cpu_state.abrt)
return;
}
new_pc=readmemw(base,0x0E);
new_flags=readmemw(base,0x10);
if (optype == OPTYPE_INT || optype == CALL)
new_flags |= NT_FLAG;
new_eax=readmemw(base,0x12);
new_ecx=readmemw(base,0x14);
new_edx=readmemw(base,0x16);
new_ebx=readmemw(base,0x18);
new_esp=readmemw(base,0x1A);
new_ebp=readmemw(base,0x1C);
new_esi=readmemw(base,0x1E);
new_edi=readmemw(base,0x20);
new_es=readmemw(base,0x22);
// if (output) pclog("Read CS from %08X\n",base+0x4C);
new_cs=readmemw(base,0x24);
new_ss=readmemw(base,0x26);
new_ds=readmemw(base,0x28);
new_ldt=readmemw(base,0x2A);
msw |= 8;
cpu_state.pc=new_pc;
// if (output) pclog("New pc %08X\n",new_pc);
cpu_state.flags = new_flags;
cpu_386_flags_extract();
// if (output) pclog("Load LDT %04X\n",new_ldt);
ldt.seg=new_ldt;
templ=(ldt.seg&~7)+gdt.base;
// if (output) pclog("Load from %08X %08X\n",templ,gdt.base);
ldt.limit=readmemw(0,templ);
ldt.base=(readmemw(0,templ+2))|(readmemb(0,templ+4)<<16);
if (is386)
{
if (readmemb(0,templ+6)&0x80)
{
ldt.limit<<=12;
ldt.limit|=0xFFF;
}
ldt.base|=(readmemb(0,templ+7)<<24);
}
// if (output) pclog("Limit %04X Base %08X\n",ldt.limit,ldt.base);
if (!(new_cs&~3))
{
pclog("TS loading null CS\n");
x86ts(NULL,0);
return;
}
addr=new_cs&~7;
if (new_cs&4)
{
if (addr>=ldt.limit)
{
pclog("Bigger than LDT limit %04X %04X %04X TS\n",new_cs,ldt.limit,addr);
x86ts(NULL,new_cs&~3);
return;
}
addr+=ldt.base;
}
else
{
if (addr>=gdt.limit)
{
pclog("Bigger than GDT limit %04X %04X TS\n",new_cs,gdt.limit);
x86ts(NULL,new_cs&~3);
return;
}
addr+=gdt.base;
}
segdat2[0]=readmemw(0,addr);
segdat2[1]=readmemw(0,addr+2);
segdat2[2]=readmemw(0,addr+4);
segdat2[3]=readmemw(0,addr+6);
if (!(segdat2[2]&0x8000))
{
pclog("TS loading CS not present\n");
x86np("TS loading CS not present\n", new_cs & 0xfffc);
return;
}
switch (segdat2[2]&0x1F00)
{
case 0x1800: case 0x1900: case 0x1A00: case 0x1B00: /*Non-conforming*/
if ((new_cs&3) != DPL2)
{
pclog("TS load CS non-conforming RPL != DPL");
x86ts(NULL,new_cs&~3);
return;
}
break;
case 0x1C00: case 0x1D00: case 0x1E00: case 0x1F00: /*Conforming*/
if ((new_cs&3) < DPL2)
{
pclog("TS load CS non-conforming RPL < DPL");
x86ts(NULL,new_cs&~3);
return;
}
break;
default:
pclog("TS load CS not code segment\n");
x86ts(NULL,new_cs&~3);
return;
}
// if (output) pclog("new_cs %04X\n",new_cs);
CS=new_cs;
do_seg_load(&cpu_state.seg_cs, segdat2);
if (CPL==3 && oldcpl!=3) flushmmucache_cr3();
oldcpl = CPL;
set_use32(0);
EAX=new_eax | 0xFFFF0000;
ECX=new_ecx | 0xFFFF0000;
EDX=new_edx | 0xFFFF0000;
EBX=new_ebx | 0xFFFF0000;
ESP=new_esp | 0xFFFF0000;
EBP=new_ebp | 0xFFFF0000;
ESI=new_esi | 0xFFFF0000;
EDI=new_edi | 0xFFFF0000;
if (output) pclog("Load ES %04X\n",new_es);
loadseg(new_es,&cpu_state.seg_es);
if (output) pclog("Load SS %04X\n",new_ss);
loadseg(new_ss,&cpu_state.seg_ss);
if (output) pclog("Load DS %04X\n",new_ds);
loadseg(new_ds,&cpu_state.seg_ds);
if (is386)
{
loadseg(0,&cpu_state.seg_fs);
loadseg(0,&cpu_state.seg_gs);
}
if (output) pclog("Resuming at %04X:%08X\n",CS,cpu_state.pc);
//exit(-1);
}
tr.seg=seg;
tr.base=base;
tr.limit=limit;
tr.access=segdat[2]>>8;
}
void sysenter(void)
{
cpu_state.eflags &= ~VM_FLAG;
cpu_state.flags &= ~I_FLAG;
ESP = sysenter_esp;
cpu_state.pc = sysenter_eip;
cpu_state.seg_cs.seg = sysenter_cs & 0xfffc;
cpu_state.seg_cs.base = 0;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit = 0xffffffff;
cpu_state.seg_cs.limit_high = 0xffffffff;
cpu_state.seg_cs.access = 0x1b;
cpu_state.seg_cs.checked = 1;
oldcpl = 0;
cpu_state.seg_ss.seg = (sysenter_cs & 0xfffc) + 8;
cpu_state.seg_ss.base = 0;
cpu_state.seg_ss.limit_low = 0;
cpu_state.seg_ss.limit = 0xffffffff;
cpu_state.seg_ss.limit_high = 0xffffffff;
cpu_state.seg_ss.access = 0x13;
cpu_state.seg_ss.checked = 1;
cpu_cur_status &= ~(CPU_STATUS_NOTFLATSS | CPU_STATUS_V86);
cpu_cur_status |= (CPU_STATUS_USE32 | CPU_STATUS_STACK32 | CPU_STATUS_PMODE);
set_use32(1);
set_stack32(1);
// pclog("syscall to %04x:%08x %04x:%08x\n", CS, cpu_state.pc, SS, ESP);
}
void sysexit(void)
{
ESP = ECX;
cpu_state.pc = EDX;
cpu_state.seg_cs.seg = (sysenter_cs | 3) + 16;
cpu_state.seg_cs.base = 0;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit = 0xffffffff;
cpu_state.seg_cs.limit_high = 0xffffffff;
cpu_state.seg_cs.access = 0x7b;
cpu_state.seg_cs.checked = 1;
oldcpl = 3;
cpu_state.seg_ss.seg = (sysenter_cs | 3) + 24;
cpu_state.seg_ss.base = 0;
cpu_state.seg_ss.limit_low = 0;
cpu_state.seg_ss.limit = 0xffffffff;
cpu_state.seg_ss.limit_high = 0xffffffff;
cpu_state.seg_ss.access = 0x73;
cpu_state.seg_ss.checked = 1;
cpu_cur_status &= ~(CPU_STATUS_NOTFLATSS | CPU_STATUS_V86);
cpu_cur_status |= (CPU_STATUS_USE32 | CPU_STATUS_STACK32 | CPU_STATUS_PMODE);
flushmmucache_cr3();
set_use32(1);
set_stack32(1);
// pclog("sysexit to %04x:%08x %04x:%08x\n", CS, cpu_state.pc, SS, ESP);
}
void x86_smi_trigger(void)
{
cpu_state.smi_pending = 1;
}
static void smi_write_descriptor_cache(uint32_t addr, x86seg *seg)
{
writememl(0, addr + 8, seg->seg | (seg->access << 16) | (seg->access2 << 24));
writememl(0, addr + 4, seg->base);
writememl(0, addr, seg->limit);
}
static void smi_load_descriptor_cache(uint32_t addr, x86seg *seg)
{
uint32_t temp;
temp = readmeml(0, addr + 8);
seg->base = readmeml(0, addr + 4);
seg->limit = readmeml(0, addr);
seg->seg = temp & 0xffff;
seg->access = temp >> 16;
seg->access2 = temp >> 24;
if ((seg->access & 0x18) != 0x10 || !(seg->access & (1 << 2))) /*expand-down*/
{
seg->limit_high = seg->limit;
seg->limit_low = 0;
}
else
{
seg->limit_high = (seg->access2 & 0x40) ? 0xffffffff : 0xffff;
seg->limit_low = seg->limit + 1;
}
}
static void smi_load_smi_selector(x86seg *seg)
{
seg->seg = 0;
seg->base = 0;
seg->limit = 0xffffffff;
seg->limit_low = 0;
seg->limit_high = 0xffffffff;
seg->access = (3 << 5) | 2;
seg->access2 = 0;
}
void cyrix_write_seg_descriptor(uint32_t addr, x86seg *seg)
{
writememl(0, addr, (seg->limit_raw & 0xffff) | (seg->base << 16));
writememl(0, addr+4, ((seg->base >> 16) & 0xff) |
(seg->access << 8) |
(seg->limit_raw & 0xf0000) |
(seg->access2 << 16) |
(seg->base & 0xff000000));
}
void cyrix_load_seg_descriptor(uint32_t addr, x86seg *seg)
{
uint16_t segdat[4], selector;
segdat[0] = readmemw(0, addr);
segdat[1] = readmemw(0, addr+2);
segdat[2] = readmemw(0, addr+4);
segdat[3] = readmemw(0, addr+6);
selector = readmemw(0, addr+8);
if (!cpu_state.abrt)
{
do_seg_load(seg, segdat);
seg->seg = selector;
seg->checked = 0;
if (seg == &cpu_state.seg_ds)
{
if (seg->base == 0 && seg->limit_low == 0 && seg->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATDS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
codegen_flat_ds = 0;
}
if (seg == &cpu_state.seg_ss)
{
if (seg->base == 0 && seg->limit_low == 0 && seg->limit_high == 0xffffffff)
cpu_cur_status &= ~CPU_STATUS_NOTFLATSS;
else
cpu_cur_status |= CPU_STATUS_NOTFLATSS;
set_stack32((segdat[3] & 0x40) ? 1 : 0);
codegen_flat_ss = 0;
}
}
}
void x86_smi_enter(void)
{
uint32_t old_cr0 = cr0;
if (smram_enable)
smram_enable();
flushmmucache();
cpu_386_flags_rebuild();
cpl_override = 1;
cr0 = 0; /*Disable MMU*/
if (cpu_iscyrix)
{
uint32_t base;
if (!(cyrix.smhr & SMHR_VALID))
cyrix.smhr = (cyrix.arr[3].base + cyrix.arr[3].size) | SMHR_VALID;
base = cyrix.smhr & SMHR_ADDR_MASK;
writememl(0, base-4, dr[7]);
writememl(0, base-8, cpu_state.flags | (cpu_state.eflags << 16));
writememl(0, base-0xc, old_cr0);
writememl(0, base-0x10, cpu_state.oldpc);
writememl(0, base-0x14, cpu_state.pc);
writememl(0, base-0x18, CS | (CPL << 21));
cyrix_write_seg_descriptor(base-0x20, &cpu_state.seg_cs);
writememl(0, base-0x24, 0);
cpl_override = 0;
cpu_cur_status = CPU_STATUS_SMM;
cpu_state.flags = 2;
cpu_state.eflags = 0;
cpu_state.pc = 0;
cr0 &= ~((1 << 0) | (1 << 2) | (1 << 3) | (1 << 31));
dr[7] = 0x400;
cpu_state.seg_cs.seg = cyrix.arr[3].base >> 4; /*Guess*/
cpu_state.seg_cs.base = cyrix.arr[3].base;
cpu_state.seg_cs.limit = 0xffffffff;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffffffff;
cpu_state.seg_cs.access = (0 << 5) | 2;
use32 = 0;
stack32 = 0;
}
else
{
writememl(0, cpu_state.smbase + 0x8000 + 0x7ffc, old_cr0);
writememl(0, cpu_state.smbase + 0x8000 + 0x7ff8, cr3);
writememl(0, cpu_state.smbase + 0x8000 + 0x7ff4, cpu_state.flags | (cpu_state.eflags << 16));
writememl(0, cpu_state.smbase + 0x8000 + 0x7ff0, cpu_state.pc);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fec, EDI);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fe8, ESI);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fe4, EBP);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fe0, ESP);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fdc, EBX);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fd8, EDX);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fd4, ECX);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fd0, EAX);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fcc, dr[6]);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fc8, dr[7]);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fc4, tr.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fc0, ldt.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fbc, cpu_state.seg_gs.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fb8, cpu_state.seg_fs.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fb4, cpu_state.seg_ds.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fb0, cpu_state.seg_ss.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fac, cpu_state.seg_cs.seg);
writememl(0, cpu_state.smbase + 0x8000 + 0x7fa8, cpu_state.seg_es.seg);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f9c, &tr);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f90, &idt);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f84, &gdt);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f78, &ldt);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f6c, &cpu_state.seg_gs);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f60, &cpu_state.seg_fs);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f54, &cpu_state.seg_ds);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f48, &cpu_state.seg_ss);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f3c, &cpu_state.seg_cs);
smi_write_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f30, &cpu_state.seg_es);
writememl(0, cpu_state.smbase + 0x8000 + 0x7f28, cr4);
writememl(0, cpu_state.smbase + 0x8000 + 0x7ef8, cpu_state.smbase);
writememl(0, cpu_state.smbase + 0x8000 + 0x7efc, 0x00020000);
cpl_override = 0;
cpu_cur_status = CPU_STATUS_SMM;
cpu_state.flags = 2;
cpu_state.eflags = 0;
cpu_state.pc = 0x8000;
cr0 &= ~((1 << 0) | (1 << 2) | (1 << 3) | (1 << 31));
dr[7] = 0x400;
smi_load_smi_selector(&cpu_state.seg_ds);
smi_load_smi_selector(&cpu_state.seg_es);
smi_load_smi_selector(&cpu_state.seg_fs);
smi_load_smi_selector(&cpu_state.seg_gs);
smi_load_smi_selector(&cpu_state.seg_ss);
cpu_state.seg_cs.seg = 0x3000;
cpu_state.seg_cs.base = cpu_state.smbase;
cpu_state.seg_cs.limit = 0xffffffff;
cpu_state.seg_cs.limit_low = 0;
cpu_state.seg_cs.limit_high = 0xffffffff;
cpu_state.seg_cs.access = (0 << 5) | 2;
use32 = 0;
stack32 = 0;
}
oldcpl = 0;
// pclog("x86_smi_enter\n");
}
void x86_smi_leave(void)
{
uint32_t temp;
uint32_t new_cr0;
if (cpu_iscyrix)
{
uint32_t base = cyrix.smhr & SMHR_ADDR_MASK;
cpl_override = 1;
dr[7] = readmeml(0, base-4);
temp = readmeml(0, base-8);
cpu_state.flags = temp & 0xffff;
cpu_state.eflags = temp >> 16;
new_cr0 = readmeml(0, base-0xc);
cpu_state.pc = readmeml(0, base-0x14);
cyrix_load_seg_descriptor(base-0x20, &cpu_state.seg_cs);
cpl_override = 0;
cr0 = new_cr0;
}
else
{
cpl_override = 1;
new_cr0 = readmeml(0, cpu_state.smbase + 0x8000 + 0x7ffc);
cr3 = readmeml(0, cpu_state.smbase + 0x8000 + 0x7ff8);
temp = readmeml(0, cpu_state.smbase + 0x8000 + 0x7ff4);
cpu_state.flags = temp & 0xffff;
cpu_state.eflags = temp >> 16;
cpu_state.pc = readmeml(0, cpu_state.smbase + 0x8000 + 0x7ff0);
EDI = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fec);
ESI = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fe8);
EBP = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fe4);
ESP = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fe0);
EBX = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fdc);
EDX = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fd8);
ECX = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fd4);
EAX = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fd0);
dr[6] = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fcc);
dr[7] = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fc8);
tr.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fc4);
ldt.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fc0);
cpu_state.seg_gs.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fbc);
cpu_state.seg_fs.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fb8);
cpu_state.seg_ds.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fb4);
cpu_state.seg_ss.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fb0);
cpu_state.seg_cs.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fac);
cpu_state.seg_es.seg = readmeml(0, cpu_state.smbase + 0x8000 + 0x7fa8);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f9c, &tr);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f90, &idt);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f84, &gdt);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f78, &ldt);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f6c, &cpu_state.seg_gs);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f60, &cpu_state.seg_fs);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f54, &cpu_state.seg_ds);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f48, &cpu_state.seg_ss);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f3c, &cpu_state.seg_cs);
smi_load_descriptor_cache(cpu_state.smbase + 0x8000 + 0x7f30, &cpu_state.seg_es);
cr4 = readmeml(0, cpu_state.smbase + 0x8000 + 0x7f28);
cpu_state.smbase = readmeml(0, cpu_state.smbase + 0x8000 + 0x7ef8);
cpl_override = 0;
cr0 = new_cr0;
}
cpu_386_flags_extract();
cpu_cur_status = 0;
use32 = stack32 = 0;
if (cr0 & 1)
{
cpu_cur_status |= CPU_STATUS_PMODE;
if (cpu_state.eflags & VM_FLAG)
cpu_cur_status |= CPU_STATUS_V86;
else
{
if (cpu_state.seg_cs.access2 & 0x40)
{
cpu_cur_status |= CPU_STATUS_USE32;
use32 = 0x300;
}
if (cpu_state.seg_ss.access2 & 0x40)
{
cpu_cur_status |= CPU_STATUS_STACK32;
stack32 = 1;
}
}
}
if (!(cpu_state.seg_ds.base == 0 && cpu_state.seg_ds.limit_low == 0 && cpu_state.seg_ds.limit_high == 0xffffffff))
cpu_cur_status |= CPU_STATUS_NOTFLATDS;
if (!(cpu_state.seg_ss.base == 0 && cpu_state.seg_ss.limit_low == 0 && cpu_state.seg_ss.limit_high == 0xffffffff))
cpu_cur_status |= CPU_STATUS_NOTFLATSS;
if (smram_disable)
smram_disable();
flushmmucache();
oldcpl = CPL;
// pclog("x86_smi_leave\n");
}